
Journal of Advanced Research (2015) 6, 987–993
Cairo University

Journal of Advanced Research
ORIGINAL ARTICLE
Sort-Mid tasks scheduling algorithm in grid computing
* Corresponding author. Tel.: +20 1066286275.

E-mail address: m_sayed85@yahoo.com (M.A. Marzok).

Peer review under responsibility of Cairo University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jare.2014.11.010
2090-1232 ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Naglaa M. Reda a, A. Tawfik b, Mohamed A. Marzok b,*, Soheir M. Khamis a
a Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
b Egypt. Ctr. for Theo. Phys., Faculty of Engineering, Modern University, Cairo, Egypt
A R T I C L E I N F O A B S T R A C T
Article history:

Received 14 July 2014

Received in revised form 10

November 2014

Accepted 21 November 2014

Available online 26 November 2014

Keywords:

Grid computing

Heuristic algorithm

Scheduling

Resource utilization

Makespan
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-

complete problem. The main aim for several researchers is to develop variant scheduling algo-

rithms for achieving optimality, and they have shown a good performance for tasks scheduling

regarding resources selection. However, using of the full power of resources is still a challenge.

In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the

utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find

appropriate resources. The base step is to get the average value via sorting list of completion

time of each task. Then, the maximum average is obtained. Finally, the task has the maximum

average is allocated to the machine that has the minimum completion time. The allocated task is

deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show

that the proposed algorithm outperforms almost other algorithms in terms of resources

utilization and makespan.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Grid computing systems [1,2] are distributed systems, enable

large-scale resource sharing among millions of computer
systems across a worldwide network such as the Internet. Grid
resources are different from resources in conventional

distributed computing systems by their dynamism, heterogeneity,
and geographic distribution. The organization of the grid infra-
structure involves four levels. First: the foundation level, it

includes the physical components. Second: themiddleware level,
it is actually the software responsible for resource management,
task execution, task scheduling, and security. Third: the services
level, it provides vendors/users with efficient services. Fourth:

the application level, it contains the services such as operational
utilities and business tools.

The scheduling has become one of the major research objec-
tives, since it directly influences the performance of grid applica-

tions. Task scheduling [3] is the main step of grid resource
management. It manages jobs to allocate appropriate resources
by using scheduling algorithms and polices. In static scheduling,

the information regarding all the resources aswell as all the tasks
is assumed to be known in advance, by the time the application is
scheduled. Furthermore, each task is assigned once to a

resource. While in dynamic scheduling, the task allocation is
done on the go as the application executes, where it is not possi-
ble to find the execution time. Tasks are entering dynamically
and the scheduler has to work hard in decision making to allo-

cate resources. The advantage of the dynamic over the static
scheduling is that the system does not need to posse the run time
behavior of the application before it runs.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2014.11.010&domain=pdf
mailto:m_sayed85@yahoo.com
http://dx.doi.org/10.1016/j.jare.2014.11.010
http://dx.doi.org/10.1016/j.jare.2014.11.010

988 N.M. Reda et al.
Since the late nineties, several heuristic algorithms for grid
task scheduling (GTS) [4–6] have been developed to improve
grid performance. They are classified into task algorithms in

which all tasks can be run independently and DAG algorithms,
where a DAG represents the partial ordering dependence rela-
tion between tasks execution.

The main contribution of this work is to introduce an effi-
cient heuristic algorithm for scheduling tasks to resources on
computational grids with maximum utilization and minimum

makespan. The proposed algorithm (Sort-Mid) depends on
the minimum completion time and the average value AV of
completion times for each task. It puts constrains to map the
most appropriate task to the best convenient resource, which

increases the grid efficiency. Performance tests show a good
improvement over existing popular scheduling algorithms.

Themost popular taskGTS algorithms are surveyed in the fol-

lowing subsection. The rest of this paper is organized as follows.
The proposed methodology with the suggested algorithm for the
scheduling problem in grid computing system is introduced. Then,

the used experimental materials followed by results and discussion
are presented. Finally, the conclusion of the overall work is given.
Related work

Opportunistic load balancing (OLB) algorithm [7] assigns each
task in arbitrary order to the next available machine regardless
of the task’s expected execution time on the machine, while,

minimum execution time (MET) algorithm [8] assigns each task
in arbitrary order to the machine with the minimum execution
time without considering resource availability. But, minimum

completion time (MCT) algorithm [8] assigns each task in
arbitrary order to the machine with the earliest completion
time. On the other hand, Min-Min algorithm [9,10] selects the

machine with minimum expected completion time and assigns
task with the MCT to it. Where, Max-Min algorithm [9,10]
selects the machine with minimum expected completion time

and the task with the maximum completion time is mapped
to it. And, switching algorithm (SA) [9] combines MCT and
MET to overcome some limitations of both methods.

Furthermore, Suffrage heuristic [9] maps the machine to the

task that would suffer most in terms of expected completion
time according to an evaluated suffrage value. Switcher
heuristic [11] switches between the Max-Min and Min-Min

algorithms by taking a scheduling decision based on the stan-
dard deviation of minimum completion time of unassigned
jobs. RASA heuristic [12] has built a matrix representing the

completion time of each task on every resource, and applies
Min-Min if the number of available resources is odd, otherwise
it applies Max-Min. Min-mean heuristic [13] reschedules the
Min-Min produced schedule by considering the mean make-

span of all the resources. Load balanced Min-Min (LBMM)
heuristic [14] has reduced the makespan and has increased
the resource utilization by choosing the resources with heavy

load and reassigns them to the resources with light load.
Mact-mini heuristic [15] maps the task with the maximum
average completion time to the machine with minimum

completion time. Recently, a new heuristic algorithm based
on Min-Min has been presented [16]. It selected resources
according to a new makespan value and the maximum value

of possibilities tasks (MVPT).
Methodology

In this section, we present a new idea for solving the scheduling
problem in a grid. Scheduling is the main step of grid machines

management [17]. Machines may be homogeneous or heteroge-
neous. A grid scheduler selects the best machine to a particular
job and submits that job to the selected machine [18]. The main

aim of suggested heuristic algorithm for scheduling a set of
tasks on a computational grid system is to maximize the
machines utilization and to minimize the makespan. Given a

grid G with a finite number, m, of machines (resources); M1,
M2, ... ,Mm, m> 1. Let T be a finite nonempty set of n tasks;
T1, T2, ... ,Tn, n > 1 that needs to be executed in G.

In the following work, the proposed algorithm called Sort-

Mid is given. It’s steps to assign each task to a suitable machine
are summarized below. It uses assignment function S: T fi G
which is defined as follows. For every positive integer i 6 n; $
a positive integer j 6 m s.t. S (Ti) =Mj. The first step is to sort
the completion times (SCT) of each task Ti in T in increasing
order. The introduced scheduling decision is based on comput-

ing the average value AV of two consecutive completion times
in SCT for each Ti. AV is computed by (SCTK + SCTK+1)/2,
where k ¼ dm=2e. In the second step, the task having the
maximum AV is selected. In the third step, the task is assigned

to the machine possessing minimum completion time. Next, the
assigned task is deleted from T. Finally, the waiting time for
the machine that executes this task is updated. These steps

are repeated until all n tasks are scheduled on m machines.
The pseudo code of the algorithm is as listed below.

Algorithm Sort-Mid:

Input: Number of tasks n, Number of machines m, Grid

G= {M1,M2, ... ,Mm}, Tasks T = {T1, T2, ... ,Tn}, Machines

availability R; Estimated time of computation ETC.

Output: The result of the assignment functionS:S(T1), S(T2), . . . ,S(Tn).

Begin

Initialization: A ‹ {1,2, . . . ,n}, K ‹ dm=2e, CT ‹ ETC;

1. While A „ Ø do

2. If |A| „ 1 Then

3. Max_value ‹ 0, Index_machine ‹ 0, Index_task ‹ 0;

4. For all i 2 A do

5. SCT ‹ sort CT [i] in ascending order;

6. AV ‹ (SCTK + SCTK+1) / 2;

7. If AV> Max_value Then

8. Max_value ‹ AV;

9. Index_task ‹ i;

10. Index_machine ‹ index of machine whose completion time

equals SCT1;

11. End If

12. End For

13. S(TIndex_task) ‹ MIndex_machine;

14. A ‹ A � {Index_task};

15. RIndex_machine(RIndex_machine + ECTIndex_task,Index_machine;

16. For all i 2 A do

17. CTi,Index_machine ‹ ECTi,Index_machine + RIndex_machine;

18. End For

19. Else

Assign the remaining task to the machine having the minimum

completion time and delete it;

20. Update waiting time of machine executing it;

21. End If

22. End While

End.

989
It is clear that Sort-Mid algorithm is correct, since at the
Fig. 1 The matrix ETC of the given.

Table 1 A comparison between algorithms in makespan and

tasks scheduling.

Algorithms M1 M2 M3 Makespan

MET T1, T2, T3 67

OLB T1 T2 T3 70

MCT T3 T1, T2 44

Max-Min T1 T2, T3 45

Min-Min T3 T1, T2 44

Sort-Mid T3 T1 T2 25
end, the set of tasks indices are vanished, i.e., all tasks are
assigned to appropriate machines.

In the following, we analyze the time complexity of the
above given algorithm.

Lemma. The time complexity of Algorithm Sort-Mid is in
O(n2m log n), where n and m are the numbers of tasks and

machines in a grid computing system, respectively.

Proof. It is obvious that the first For-loop starting from step 4
to step 12 iterates n time. Each iteration costs at least (m
logm), which is one run of step 5 to sort the elements at row

number i of CT in an ascending order. Also, the second For-
loop starting from step 16 to step 18 which updates the wait
time, costs O (n). h

And, one run to select task and delete it and update time
take n + m+ n, respectively. Since the while-loop (Starting

from step 1 to step 22) executes n time, each run of them costs
of (nm logm+ 2n+ m). This implies that the total time com-
plexity of the algorithm is in O (n2m logn).

An illustrative example

To clarify how the proposed algorithm Sort-Mid schedules

tasks perfectly, consider the following example for a grid envi-
ronment with three machines and three tasks. Its ETC matrix
with special form is given in Fig. 1.

The initialization step initializes the CT by ETC and

machines availability vector R by zeros.
At first iteration, Max_value = Index_machine = Index_

task = 0 and A= {1,2,3}, then the number of elements

|A| = 3, and the created SCT after sorting illustrates as
follows.

SCT ¼
M3 : 22 M2 : 23 M1 : 45

M3 : 22 M1 : 45 M2 : 70

M3 : 23 M1 : 25 M2 : 63

2
64

3
75

For the first row of SCT, the average value (AV) of the
first task is AV (1) = (SCT2 + SCT3)/2 = (23 + 45)/2.
After that, the new value 34 is compared with the value of

Max_value = 0, so the Max_value = 34, Index_task = 1
and Index_machine = 3.

For the second row, the average value is AV
(2) = (SCT2 + SCT3)/2 = (45 + 70)/2. Then after compari-

son, Max_value = 57.5, hence Index_task = 2 and Index_
machine = 3.

For the third row, the average value AV (3) = (SCT2 +

SCT3)/2 = (25 + 63)/2. And, the values of Max_value are still
maximum value, Index_task and Index_machine will not
change.

At the end of the first iteration, the task having Index_task
(= 2) is deleted from the set A, then A= {1,3}. And
R3 = 0 + 22 = 22. And so, CT updates to the following
matrix:

CT ¼
M1 : 45 M2 : 23 M3 : 44

M1 : 25 M2 : 63 M3 : 45

� �

At the second iteration for while-loop, first put Max_
value = Index_machine = Index_task = 0, A= {1,3} and

|A| = 2. Then, SCT is arranged as follows:

Sort-Mid algorithm
SCT ¼
M2 : 23 M3 : 44 M1 : 45

M1 : 25 M3 : 45 M2 : 63

� �

For the first row, the average value of the first task is AV
(1) = (SCT2 + SCT3)/2 = (44 + 45)/2 in SCT. After compar-

ing 44.5 with 0, then Max_value = 34, Index_task = 1 and
Index_machine = 2.

For the second row, AV (3) = (SCT2 + SCT3)/

2 = (45 + 63)/2. Then Max_value = 54, Index_task = 3 and
Index_machine = 1.

At the end of second iteration, the task with index Index_
task (= 3) is deleted and A= {1}, R1 = 0 + 25 = 25, CT

CT ¼ M1 : 70 M2 : 23 M3 : 44½ �

In the third iteration, A= {1} and |A| = 1, so the task with

index 1 is assigned to the machine having the minimum com-
pletion time M2. i.e., Index_task = 1 and Index_machine = 2.

Finally, at the end of third iteration, the remaining task is

deleted, then A= Ø. And R2 = 0 + 23 = 23.
As a result of the above execution, the makespan for the

above example equals Max (22, 25 and 23) = 25. The make-

span produced by other previous algorithms compared to the
result of Sort-Mid algorithm is shown in Table 1.

Experimental materials

For comparison of our proposed heuristic with other
scheduling algorithm, various heuristic algorithms have been
developed to compare with Sort-Mid algorithm. In this sec-

tion, the benchmark description is given, and the ETC model
used as in benchmark experiments [14–20] is specified.

In this paper, we used the benchmark model [4]. The simu-

lation model is based on expected time to compute (ETC)
matrix for 512 tasks and 16 machines. An ETC matrix is said
to be consistent (C) if whenever a machine mj executes any task

ti faster than machine mk, then machine mj executes all tasks
faster than machine mk. In contrast, inconsistent matrices (I)
characterize the situation where machine mj may be faster than

machine mk for some tasks and slower for others. Semi-consis-
tent matrices (S) happen when some machines are consistent
while others are inconsistent. Also, different ETC matrix task
and machine heterogeneity are studied, each one has two cases

Table 2 The ETC model.

Consistency Heterogeneity

Task (High) Task (Low)

Machine Machine

High Low High Low

Consistent C_hihi C_hilo C_lohi C_lolo

Inconsistent I_hihi I_hilo I_lohi I_lolo

Semi-consistent S_hihi S_hilo S_lohi S_lolo

990 N.M. Reda et al.
high (hi) or low (lo). Thus, the twelve matrices are tested and
abbreviated as shown in Table 2.

In addition, a computer program in VB language is devel-
oped for seven existing and proposed heuristic methods men-
tioned above. This program produces a schedule that maps

tasks to available resources and calculates the objectives based
on the ETC matrix supplied to it. The twelve different ETC
matrices suggested by Braun et al. [4] for different scenarios

mentioned in Table 2 are used as inputs to the computer pro-
gram, and the results are analyzed in the following section.

Results and discussion

There are several performance metrics to evaluate the quality
of a scheduling algorithm [3]. This section tests Sort-Mid algo-
rithm mentioned in Section ‘Methodology’ according to these

criteria. It considers the problem of scheduling n tasks on a
heterogeneous grid system of m machines. It presents in the
following a comparison of most recent and efficient algorithms

against Sort-Mid in regard to each criterion for emphasizing
its strength. In the following, we compare our heuristic algo-
rithm with other scheduling algorithms via using benchmark

experiments [4,19].

Computational complexity

The complexity is an essential metric in theoretical analysis of
algorithms that asymptotically estimate their performance. It
Table 3 Complexity comparison for Sort-Mid with other algorithm

Algorithm MET OLB Mact-min Max-min

Complexity O(nm) O(nm) O(nm) O(n2m)

G
U

 v
al

ue
s

Twelve Insta

0

0.2

0.4

0.6

0.8

1

C_
hi

hi

C_
hi

lo

C_
lo

hi

C_
lo

lo

I_
hi

hi

I_
hi

lo

Sort-Mid Min-Min Max-Min Suff

Fig. 2 A comparison of the G
determines the amount of time to solve the given computa-
tional problem using selected mathematical notation such as
the Big O. In our case, it indicates how fast the scheduling

algorithm will be in finding a feasible solution in a highly
dynamic heterogeneous grid system. Table 3 illustrated the
complexity of Sort-Mid algorithm and other important ones.

It is worth to remark that the number of machines in a grid
m is much less than the number of tasks n and so log m.
Therefore, in practical, the running time of Sort-Mid

algorithm is approximately equal to the running time of
Max-Min, Min-mean, Min-Min and suffrage algorithm.

Resource utilization

The grid’s resource utilization is the most essential perfor-

mance metric for grid managers. The Machine’s Utilization
(MU) is defined as the amount of time at which a machine
is busy in executing tasks, while the grid’s resource utilization

(GU) is the average of machines’ utilization. They are
computed as follows:

GU ¼
Pm

j¼1MUj

m

where,

MUj ¼
rj

makespan
; for j ¼ 1; 2; . . . ;m:

Fig. 2 and Tables 4–6 show the values of GUs for the eight
mentioned algorithms. Sort-Mid gives the second maximum
resource utilization for ten instances and third maximum

resource utilization for two instances. The Max-Min gives
the highest maximum resource utilization for all instances
but the difference is very small, while the computed makespan

of Sort-Mid algorithm is better than that of Max-Min in all
instances.

Makespan

The makespan is an important performance criterion of
scheduling heuristics in grid computing systems. It is
s.

Min-mean Min-Min Suffrage Sort-Mid

O(n2m) O(n2m) O(n2m) n2m logm

nces

I_
lo

hi

I_
lo

lo

S_
hi

hi

S_
hi

lo

S_
lo

hi

S_
lo

lo

rage MET MCT OLB LJFR-SJFR

U values for 12 instances.

Table 4 Grid’s resource utilization (consistent instance).

C_hihi C_hilo C_lohi C_lolo

Sort-Mid 0.99432 0.99542 0.9853 0.996616

Min-Min 0.89648 0.94337 0.8823 0.941213

Max-min 0.99882 0.99950 0.9989 0.999504

Suffrage 0.94325 0.97425 0.9595 0.976099

MET 0.0625 0.0625 0.0625 0.0625

MCT 0.95386 0.97069 0.9690 0.95151

OLB 0.94671 0.92035 0.9285 0.923213

LJFR-SJFR 0.96715 0.97862 0.9728 0.980576

Table 5 Grid’s resource utilization (inconsistent instance).

I_hihi I_hilo I_lohi I_lolo

Sort-Mid 0.98453 0.99326 0.9756 0.991719

Min-Min 0.84491 0.93694 0.9179 0.953698

Max-Min 0.99367 0.99819 0.9959 0.998497

Suffrage 0.91986 0.97672 0.9744 0.955264

MET 0.62863 0.75058 0.5366 0.740376

MCT 0.93287 0.95978 0.9496 0.965665

OLB 0.95119 0.95589 0.9340 0.979608

LJFR-SJFR 0.97782 0.98267 0.9819 0.978605

Table 6 Grid’s resource utilization (semi-consistent instance).

S_hihi S_hilo S_lohi S_lolo

Sort-Mid 0.9874 0.9941 0.9799 0.9888

Min-Min 0.87799 0.92539 0.8868 0.924657

Max-Min 0.99875 0.99917 0.9938 0.999145

Suffrage 0.96339 0.95712 0.9663 0.951159

MET 0.11088 0.12048 0.1219 0.124449

MCT 0.92827 0.93834 0.9539 0.951856

OLB 0.96709 0.92459 0.962 0.951005

LJFR-SJFR 0.98550 0.98387 0.9824 0.981659

Table 7 Makespan values of high task, high machine heter-

ogeneity in case of C, I, and S benchmark models, respectively.

C_hihi I_hihi S_hihi

Sort-Mid 9683148.7 3724452.312 5632995.76

Min-Min 9037587.109 4024444.672 5377382.055

Max-Min 12255384.79 7146473.427 9213627.859

Suffrage 11990851.28 4809887.958 7442261.93

MET 47472299.43 4508506.792 25162058.14

MCT 11422624.49 4413582.982 6693923.896

OLB 14376662.18 26102017.62 19464875.91

LJFR-SJFR 12368381.53 6129579.87 8295806.53

Table 8 Makespan values of high task, low machine heter-

ogeneity in case of C, I, and S benchmark models, respectively.

C_hilo I_hilo S_hilo

Sort-Mid 175920.6628 87965.99592 116233.14

Min-Min 166828.8663 83379.01434 110333.114

Max-Min 207680.683 143476.485 167058.1754

Suffrage 188756.6255 99838.9465 136540.7513

MET 1185092.969 96610.48102 605363.7727

MCT 185887.4041 94855.91348 126587.5914

OLB 221051.8236 272785.2008 250362.1138

LJFR-SJFR 200846.4618 128909.6339 153719.3364

Table 9 Makespan values of low task, high machine heter-

ogeneity in case of C, I, and S benchmark models, respectively.

C_lohi I_lohi S_lohi

Sort-Mid 325366.0837 134330.3048 169284.5168

Min-Min 291711.0926 124644.635 153307.7354

Max-min 398822.906 255370.7475 272001.9739

Suffrage 397193.1733 140382.7428 179748.7113

MET 1453098.004 185694.5945 674689.5356

MCT 378303.6246 143816.0937 186151.2863

OLB 477357.0195 833605.6545 603231.4673

LJFR-SJFR 390605.4791 212557.6419 246246.4265

Table 10 Makespan values of low task, low machine heter-

ogeneity in case of C, I, and S benchmark models, respectively.

C_lolo I_lolo S_lolo

Sort-Mid 5884.438158 3041.923489 4008.148616

Min-Min 5670.939533 2835.886811 3943.347953

Max-min 7020.853442 4967.738767 6176.0686

Suffrage 6052.637899 2947.256655 4081.267844

MET 39582.29732 3399.284768 21042.41343

MCT 6360.054945 3137.350329 4436.117532

OLB 7306.595595 8938.026908 8938.389213

LJFR-SJFR 6767.322547 4321.483534 5584.607333

Sort-Mid algorithm 991
defined as the maximum completion time of application
tasks executed on grid resources. Formally, it is computed

by using the following equation. Note that C is the matrix
of the completion times after executing given tasks in grid
computing system and R is the vector of waiting times of

m machines.

Makespan ¼ maxfcijj81 6 i 6 n; 1 6 j 6 mg; or

Makespan ¼ maxfrjj81 6 j 6 mg:

The makespan of the scheduling algorithms for the
twelve different instances of the ETC matrices is shown

in Tables 7–10. Furthermore, Fig. 3 illustrates a compari-
son of the makespan between Sort-Mid and other
algorithms for the above case study. In addition, Table 11

gives the rank of all heuristics based on grid’s resources
utilization and makespan value of respective schedule for
different instances.

M
ak

es
pa

n
va

lu
es

Twelve Instances

3

4

5

6

7

8

C_
hi

hi

C_
hi

lo

C_
lo

hi

C_
lo

lo

I_
hi

hi

I_
hi

lo

I_
lo

hi

I_
lo

lo

S_
hi

hi

S_
hi

lo

S_
lo

hi

S_
lo

lo

Sort-Mid Min-Min Max-Min Suffrage MET MCT OLB LJFR-SJFR

Fig. 3 Makespan comparison for 12 instances.

Table 11 Rank of heuristics based on resources utilization and makespan.

Grid’s resources utilization Makespan

I II III I II II

C_hihi Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid MCT

C_hilo Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid MCT

C_lohi Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid MCT

C_lolo Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid Suffrage

I_hihi Max-Min Sort-Mid LJFR-SJFR Sort-Mid Min-Min MCT

I_hilo Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid MCT

I_lohi Max-Min LJFR-SJFR Sort-Mid Min-Min Sort-Mid Suffrage

I_lolo Max-Min Sort-Mid OLB Min-Min Suffrage Sort-Mid

S_hihi Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid MCT

S_hilo Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid MCT

S_lohi Max-Min LJFR-SJFR Sort-Mid Min-Min Sort-Mid Suffrage

S_lolo Max-Min Sort-Mid LJFR-SJFR Min-Min Sort-Mid Suffrage

992 N.M. Reda et al.
Conclusions

Selecting the appropriate resource for a specific task is one of

the challenging work in computational grid. This work intro-
duces a new task scheduling algorithm called Sort-Mid. The
implementation of Sort-Mid algorithm and various existing

algorithms are tested using a benchmark simulation model.
Min-Min is the simplest and common scheduling algorithm
for grid computing. But, it works poorly when the number
of large tasks is less than the number of small tasks. Also,

the computed makespan by Min-Min in this case is not good.
The computed grid’s resources utilization by Min-Min is not
good. To avoid the disadvantages of grid’s resources

utilization and makespan, Sort-Mid is designed to maximize
grid’s resources utilization and to minimize the makespan.
This algorithm overcomes the affection of large varies of task’s

execution times. A comparison of makespan values between
our algorithm and other seven scheduling algorithm has been
conducted. Obviously, the result of Sort-Mid is better than

all algorithms in the eleven underling instances except for
Min-Min. Nevertheless, Sort-Mid is the best in case of
inconsistent high task and high machine heterogeneity. On
the other hand, experimental results indicate that Sort-Mid

utilizes the grid by more than 99% at 6 instances and more
than 98% at 4 instances.
In conclusion, the rank of the proposed Sort-Mid algorithm
regarding both makespan and utilization is very good.

Conflict of Interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

References

[1] Magoulès F, Pan J, Tan K, Kumar A. Introduction to grid

computing. London, New York: CRC Press; 2009.

[2] Amalarethinam, George DI, Muthulakshmi P. An overview of

the scheduling policies and algorithms in grid computing. Int

J Res Rev Comput Sci 2011;2(2):280–94.

[3] Chandak A, Sahoo B, Turuk A. An overview of task scheduling

and performance metrics in grid computing. Int J Comput Appl

2011:30–3.

[4] Braun TD, Siegel HJ, Beck N, Boloni LL, Maheswaran M,

Reuther AL, et al. A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous

http://refhub.elsevier.com/S2090-1232(14)00143-X/h0005
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0005
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0010
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0010
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0010
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0015
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0015
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0015
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0020
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0020
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0020

Sort-Mid algorithm 993
distributed computing systems. J Parallel Distrib Comput

2011;61(6):810–37.

[5] Ma T, Yan Q, Liu W, Guan D, Lee S. Grid task scheduling:

algorithm review. IETE Tech Rev 2011;28(2):158–67.

[6] Elzeki OM, Rashad MZ, Elsoud MA. Overview of scheduling

tasks in distributed computing systems. Int J Soft Comput Eng

2012;2(3):470–5.

[7] Maheswaran M, Ali S, Siegel HJ, Hensgen D, Richard FF.

Dynamic matching and scheduling of a class of independent

tasks onto heterogeneous computing systems. HCW ‘99, DC,

USA; 1999. p. 30–44.

[8] Freund RF, Gherrity M, Ambrosius S, Campbell M,

Halderman M, Hensgen D, et al. Scheduling resources in

multi-user, heterogeneous, computing environments with

SmartNet. HCW ‘98, Orlando, FL; 1998. p. 184–99.

[9] Maheswaran M, Ali S, Siegel HJ, Hensgen D, Richard FF.

Dynamic mapping of a class of independent tasks onto

heterogeneous computing systems. J Parallel Distrib Comput

1999;59(2):107–31.

[10] Anousha S, Ahmadi M. An improved Min-Min task scheduling

algorithm in grid computing. LNCS 7861; 2013. p. 103–13.

[11] Singh M, Suri PK. QPSMax-Min<>Min-Min: a QoS based

predictive Max-Min, Min-Min switcher algorithm for job

scheduling in a grid. Inform Technol J 2008;7(8):1176–81.

[12] Parsa S, Entezari-Maleki R. RASA: a new grid task scheduling

algorithm. Int J Digital Content Technol Appl 2009;3(4):91–9.
[13] Kamalam GK, Bhaskaran V. A new heuristic approach: Min-

Mean algorithm for scheduling meta-tasks on heterogeneous

computing systems. Int J Comput Sci Network Secur 2010;10(1):

24–31.

[14] Kokilavani T, Amalarethinam DI. Load balanced Min-Min

algorithm for static meta-task scheduling in grid computing. Int

J Comput Appl 2011;20(2):43–9.

[15] Alharbi F. Multi objectives heuristic algorithm for grid

computing. Int J Comput Appl 2012;46(18):39–45.

[16] Anousha S, Anousha S, Ahmadi M. A new heuristic algorithm

for improving total completion time in grid computing. Lect

Notes Electr Eng 2014;308:17–26.

[17] Chaturvedi AK, Sahu R. New heuristic for scheduling of

independent tasks in computational grid. Int J Grid Distrib

Comput 2011;4(3):25–36.

[18] Kousalya K, Balasubramanie P. Ant algorithm for grid

scheduling powered by local search. Int J Open Probl Compt

Math 2008;1(3):222–40.

[19] Braun TD, Siegel HJ, Beck N, Boloni LL, Maheswaran M,

Reuther AL, et al. A comparison study of static mapping

heuristics for a class of meta-tasks on heterogeneous computing

systems. HCW’99, DC, USA; 1999. p. 15–29.

[20] Merajiand S, Salehnamadi MR. A batch mode scheduling

algorithm for grid computing. J Basic Appl Sci Res 2013;3(4):

173–81.

http://refhub.elsevier.com/S2090-1232(14)00143-X/h0020
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0020
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0025
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0025
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0030
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0030
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0030
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0045
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0045
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0045
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0045
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0055
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0055
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0055
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0055
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0060
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0060
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0065
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0065
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0065
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0065
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0070
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0070
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0070
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0075
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0075
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0080
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0080
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0080
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0085
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0085
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0085
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0090
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0090
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0090
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0100
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0100
http://refhub.elsevier.com/S2090-1232(14)00143-X/h0100

	Sort-Mid tasks scheduling algorithm in grid computing
	Introduction
	Related work

	Methodology
	An illustrative example

	Experimental materials
	Results and discussion
	Computational complexity
	Resource utilization
	Makespan

	Conclusions
	Conflict of Interest
	Compliance with Ethics Requirements
	References

