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Abstract Data clustering usually requires extensive

computations of similarity measures between dataset

members and cluster centers, especially for large datasets.

Image clustering can be an intermediate process in image

retrieval or segmentation, where a fast process is critically

required for large image databases. This paper introduces a

new approach of multi-agents for fuzzy image clustering

(MAFIC) to improve the time cost of the sequential fuzzy

c-means algorithm (FCM). The approach has the distin-

guished feature of distributing the computation of cluster

centers and membership function among several parallel

agents, where each agent works independently on a dif-

ferent sub-image of an image. Based on the Java Agent

Development Framework platform, an implementation of

MAFIC is tested on 24-bit large size images. The experi-

mental results show that the time performance of MAFIC

outperforms that of the sequential FCM algorithm by at

least four times, and thus reduces the time needed for the

clustering process.

Keywords Image clustering � Fuzzy c-means �
Multi-agent system

1 Introduction

Data clustering is a key topic in Computer Science and a

common technique for data analysis that is used in a variety

of fields, such as data mining, pattern recognition, and

machine learning. Clustering is the process of partitioning

or grouping a given dataset into a number of clusters such

that the items in the same cluster are as similar as possible,

and items in different clusters are as dissimilar as possible

[37]. Clustering methods can be classified according to

whether the clusters are hard or fuzzy. Fuzzy clustering

methods allow the items to belong to several clusters with

different degrees of membership. In real systems, it is very

often the case that no sharp boundaries between clusters

exist, so that fuzzy clustering is more natural than hard

clustering. Various methods of fuzzy clustering are given

in [38].

One of the best-known and most widely used fuzzy

clustering methods is the fuzzy c-means algorithm (FCM),

which is developed based on iterative minimization of an

objective function [6, 15, 34]. It was introduced in 1973 by

Dunn and generalized in 1981 by Bezdek, as mentioned in

[38]. In addition to using FCM in a variety of applications,

such as medical diagnosis [18, 35], remote sensing [14,

16], and image segmentation [10, 25, 39, 40], FCM is also

utilized in content-based image retrieval (CBIR) [26, 32].

In particular, a higher retrieval performance can be

achieved when the clustering process for CBIR is used [8,

23], and the efficiency of utilizing the clustering algorithms

for CBIR systems has already been shown. For instance,

the FCM algorithm for an image clustering based on the

color and texture features is presented in [26], where the

color and texture features are extracted from an image

pixel, then clustered into regions that exhibit similar fea-

tures. Finally, regions are described by a set of features that
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are indexed for the retrieval process. Another CBIR system

based on the FCM and k-means algorithms to improve the

accuracy of the retrieval process is presented in [29].

2 Related works

Many solutions have been proposed to overcome FCM’s

high time complexity by reducing the number of compu-

tations in each iteration. For instance, Eschrich et al. [12]

introduced a means of reducing the dataset that will be

clustered through combining similar feature vectors.

Solutions other than Eschrich et al.’s that follow the same

approach are given in [2, 17]. Another approach is to make

use of distributed or parallel processing technology, such

that several processors can be used in parallel to speedup

FCM. This approach is presented in [22, 24, 28], where the

main concept is to distribute the iterative process to find the

cluster centers among many processors. Usually, there is

one master processor that equally divides the dataset and

sends the results to the other processors to start the clus-

tering process on the local data. The centralized control at

the master process leads to lack of robustness.

A different approach commonly used within distributed

artificial intelligence is offered by multi-agent systems

(MASs), which are cooperative sets of agents acting

together to solve a problem. An agent-based system is one

of the most important paradigms, since it represents a new

way of analyzing, designing, and implementing complex

software systems. MASs are ideally suited to modeling a

wide range of complex problems utilizing the massive

power of distributed parallel systems. An advantage of

employing MAS is ‘‘modularity’’, where each agent is

specialized in solving a particular problem that enables

efficient reusability of agents. Another advantage is ‘‘effi-

ciency’’, which is due to the inherent concurrency of agents

that are working at the same time in different independent

or dependent sub-problems of the main problem. A third

advantage is ‘‘reliability’’, which avoids a single point of

failure in centralized systems [36].

Some work has been done in the clustering problem

using MAS. A multi-agent approach to continuous online

clustering of streaming data in a dynamic and distributed

environment is proposed in [21]. A distributed clustering

based on MAS for large dataset of documents is introduced

in [30], to improve accuracy and relevancy in information

retrieval. More on utilizing MAS in data clustering is given

in [1, 7, 33].

Based on advantages of MAS, work has been done in

image segmentation as well [9, 20, 27]. In addition, the

MAS paradigm has also been utilized in CBIR. As an

example, an agent-based CBIR system is proposed in [31],

which is an interactive retrieval system that focus on using

relevance feedback from the user, by means of using a

particular user’s image similarity preferences. Another

multi-agent architecture for CBIR is presented in [11].

Each agent works independently and different agents work

in parallel, to assess the similarity of the query image to

each candidate image based on a specific similarity crite-

rion. Finally, the partial results of different agents are

integrated based on the user’s selected voting scheme [11].

In this paper, we propose a multi-agent-based approach,

multi-agents for fuzzy image clustering (MAFIC), which

has the distinguished feature of distributing the computa-

tion of cluster centers and membership of the dataset

among several independent parallel agents on different

parts of the dataset. Consequently, the approach solves the

problem of iterating computations in a much faster way.

The rest of the paper is organized as follows. Section 3

introduces the FCM algorithm. The proposed MAFIC

approach is presented in Sect. 4, and its implementation is

elaborated on and explained in Sect. 5. A comparison of

the results of implementing the proposed agent-based

approach’s performance against the sequential FCM is

described and evaluated in Sect. 6. The MAFIC approach

is contrasted with the parallel FCM approach in Sect. 7.

Finally, a conclusion is presented in Sect. 8.

3 Sequential fuzzy c-means image clustering

FCM is based on the concept of fuzzy c-partition, so that it

assigns different degrees of membership to each data point,

creating fuzzy boundaries.

Let X ¼ fx1; x2; . . .; xng be an image of n pixels, where

xkðk ¼ 1; 2; . . .; nÞ is a pixel in the p-dimensional vector

space R
p, and c be the number of clusters, such that

2� c� n. Then, a fuzzy c-partition of the image X is

represented by a real c� n matrix U ¼ ½uik�, where uik is

the degree of membership of xk in the ith cluster that sat-

isfies the following conditions.

uik 2 ½0; 1�; 8i; k;
0\

Pn
k¼1 uik\n; 8i 2 f1; 2; . . .; cg;

Pc
i¼1 uik ¼ 1; 8k 2 f1; 2; . . .; ng:

9
>=

>;
ð1Þ

FCM aims to find the optimal fuzzy c-partition that mini-

mizes the objective function, JðU;V ; XÞ, given by:

JðU;V ; XÞ ¼
Xn

k¼1

Xc

i¼1

um
ik d2ðxk; viÞ; ð2Þ

where V ¼ fv1; . . .; vcg is a set of cluster centers with vi 2
R

p indicating the center of cluster i (prototype), m is a

weighting exponent on each fuzzy membership such that

m 2 ½1;1Þ, d2ðxk; viÞ ¼ jjxk � vijj2 is a distance measure

between data point xk and cluster center vi, and jj:jj is the
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Euclidean norm. The objective function JðU;V ; XÞ is

minimized via an iterative process, in which the degrees of

membership uik and the cluster centers vi are updated using

the following equations:

uik ¼
1

Pc
j¼1

dðxk ;viÞ
dðxk ;vjÞ

� � 2
m�1

; ð3Þ

vi ¼
Pn

k¼1 um
ikxkPn

k¼1 um
ik

: ð4Þ

FCM updates the membership matrix U and the cluster

centers V by iteratively looping between Eqs. (3) and (4)

until it converges (which consumes much of the time). The

convergence occurs when the difference between two

successive values of JðU;V ; XÞ is less than or equal a

predefined threshold value (n), or a predefined number of

iterations is reached. A multi-agent-based approach to

improve the performance of FCM is proposed in this paper,

by means of dividing an image to equally sized partitions

(sub-images) and distributing the computation of uik and vi

among several agents that work simultaneously on a part of

the image (sub-image).

4 MAFIC: multi-agents for fuzzy image clustering

In MAFIC, the dataset is a set of image pixels that is

equally partitioned among the agents. Let the number of

clustering agents be b� b, so that the image is divided

horizontally into b sub-images and vertically as well. Each

agent handles part of the image different from other parts

handled by other agents. The fuzzy c-partition using

Eq. (3) and the cluster centers using Eq. (4) are computa-

tionally distributed among the agents, so that each agent

calculates them only for its local data.

The suggested working procedure for the MAFIC

approach consists of five different types of agents: a Load

agent, a Manager agent, a User agent, a Master Clustering

agent, and b2 Clustering agents. Henceforth, these five

types of agents are denoted as Lagent, Magent, Uagent,

MCagent, and Cagents, respectively. The conceptual

architecture of the multi-agent approach illustrating the

proposed types of agents and their interactions is shown in

Fig. 1. More on this issue is elaborated by explaining a

usage scenario below, after a sequence that describes how

the main ideas of the MAFIC approach generally work is

listed first.

4.1 The MAFIC parallel clustering method

1. The Uagent initiates the interaction between a user and

the MAS and gets as inputs the image’s name and the

clustering parameters: the number of clusters (c), the

fuzziness value (m), a small positive threshold constant

(n), and the maximum number of iterations, then sends

a request to the Magent.

2. The Magent sends two requests: one to the Lagent to

show the image and the other to the MCagent to start

the process of clustering.

3. The MCagent divides the image into b� b sub-images.

Then, it creates b2 Cagents and sends requests to them.

4. Cagentl starts the clustering process on sub-imagel,

where l ¼ 1; . . .; b2. Each Cagentl then performs as

follows.

4:1. Set iteration number t ¼ 0.

4:2. Initialize randomly the fuzzy c-partition U
ð0Þ
l

that satisfies the constraints in Eq. (1).

4:3. Calculate cluster center v
ðtÞ
il on its sub-imagel

using Eq. (4).1 Let the numerator and denomi-

nator of Eq. (4) for Cagentl be denoted by

N
ðtÞ
il ¼

Pnl

k¼1 um
ik xk and D

ðtÞ
il ¼

Pnl

k¼1 uik, respec-

tively, where nl gives the number of pixels for

sub-imagel. Thereafter, Cagentl sends a request

to the MCagent to compute the global cluster

centers V of the whole image, by means of

collecting and combining the above-mentioned

values using

Pb2

l¼1
N
ðtÞ
ilPb2

l¼1
D
ðtÞ
il

, where i ¼ 1; . . .; c. Then,

MCagent sends V to all Cagentl, so that each

Cagent l has the same cluster centers.

4:4. Compute local objective function J
ðtÞ
l as in

Eq. (2) using the values of V that are computed

in step 4.3. Then, J
ðtÞ
l ðU

ðtÞ
l ;V

ðtÞ
l ; XlÞ values are

collected and combined by the MCagent to

compute the global objective function

J ¼
Pb2

l¼1 J
ðtÞ
l .

4:5. Stop if the difference between two successive

values of J is less than or equal a threshold (n),

jJðtþ1Þ � JðtÞj � n, or the maximum number of

iterations is reached. Otherwise, set t ¼ t þ 1

and compute a new fuzzy c-partition U
ðtÞ
l using

the global cluster centers V and go to step 4.3.

4:6. Use the membership function Ul of sub-imagel

and the global cluster centers V to get clustered

sub-imagel.

4:7. Send clustered sub-imagel to the MCagent.

Then, Cagentl is destructed after finishing its

task.

1 Note that superscript ðtÞ indicates computations in iteration t.
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5. The MCagent combines all clustered sub-images to get

the total one. Then, it sends the final clustered image to

the Magent.

6. The Magent sends a request to the Lagent for

displaying the clustered image.

7. The Magent notifies the Uagent that the process of

clustering is finished. The Uagent consequently, noti-

fies the user.

4.2 The MAFIC usage scenario

The following items explain in more detail the exchange of

messages between agents in a generic MAFIC usage sce-

nario, and the flowchart in Fig. 2 fully describes the sce-

nario from its start until it finishes:

• Once the MAS starts, the Uagent, Magent, MCagent,

and Lagent are created.

• The Uagent connects a user to the MAS, by means of

getting inputs and showing results from/to the user. At

first, the Uagent checks that there is no empty value for

any of the inputs. Then, it waits for the response from

the Magent, which indicates that the process of

clustering is successfully finished.

• The Magent manages the MAS. The received

message from the Uagent must satisfy specific

constraints, such as including the same content

language2 and ontology3 of the Magent, to communicate

effectively. These constraints determine the type of

messages that the Magent can handle. At first, the

Magent checks whether or not there is an image having

that name.4 If the Magent could not find the image, then

it sends a ‘‘refuse message’’ to the Uagent indicating the

image is not found. Otherwise, the Magent sends two

requests, as shown in Fig. 2 and step 2 of the above

method. Thereafter, it waits for the response from the

MCagent (i.e., the result of the clustering process).

When an ‘‘agree message’’ is received from the

MCagent, the Magent immediately sends its own ‘‘agree

message’’ to the Uagent. The Magent has to wait for an

‘‘inform message’’ that indicates that the clustered

image is received. Meanwhile, the Magent receives an

‘‘inform message’’ from the Lagent indicating the image

is successfully displayed to the user.

• The MCagent is responsible for managing the process

of clustering. The MCagent starts dividing the image,

as described in step 3 of the above method, by means of

determining the x- and y-coordinates, and the size

MAFIC Architecture

Uagent

Magent

Lagent

MCagent

Main Container

Cagent 1 Cagent 2 . . . Cagent b2

container-1 Container

Request
Reply

Re
que
st

Re
ply

R
eq
ue
st

Request and
Reply

In
fo
rm

Fig. 1 The conceptual

architecture of MAFIC

2 The content language indicates the syntax used to express the

content.
3 The ontology indicates the vocabulary of the symbols used in the

content.
4 Images are stored in a physical storage such as hard disk.
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(i.e., width and height) of each sub-image. In case that

the image’s size is divisible by b, the sizes of sub-

images are equal. Otherwise, the sub-images’ sizes are

not equal due to distributing the excess pixels among

sub-images.

• Each Cagentl communicates with the MCagent in three

cases, as clarified in steps 4.3., 4.4., and 4.7. of the

above method (and Fig. 2).

5 JADE: a platform to implement MAFIC

An implementation of the proposed MAFIC approach has

been made within the Java Agent DEvelopment Frame-

work5 (JADE) agent platform. JADE is one of the best

modern agent environments that is completely written in

Java, open source, and FIPA6-complaint [4]. The JADE

framework simplifies the development of agent-based

applications through the run-time environment (in which

the agents can live); a library of classes that can be used to

develop agents; and graphical tools that facilitate moni-

toring and debugging the activities of agents. For more

detailed descriptions of the JADE architecture and devel-

oping agents with JADE, see [3]. The rest of this section

only elaborates on the JADE characteristics that are nec-

essary for the reader to follow on later discussions.

The JADE platform is composed of agent containers that

can be distributed over a network. Agents live in contain-

ers, which are the Java processes that provide the JADE

run-time and all the services needed for hosting and exe-

cuting agents. There is a special container called the main

container and every platform contains only one main

container. It is the first container to be launched and all

5 The online documentation is available at http://jade.tilab.com. 6 FIPA: the Foundation for Intelligent Physical Agents.

Fig. 2 A generic usage scenario of the MAFIC approach
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other containers must join to a main container by regis-

tering with it. JADE provides a number of additional agents

that are included in the main container by default when

loading JADE: the agent management system agent

responsible for managing and controlling the life cycle of

other agents in the platform, and the directory facilitator

agent that provides the yellow pages service to allow

agents to register their capabilities and to allow other

agents to identify appropriate agents they need.

In the suggested implementation, a JADE platform

consists of two containers, which are running on one

machine. The Uagent, the Magent, the Lagent, and the

MCagent live on the main container. Cagents are created

and live on the second container, which is called container-

1. Both these containers and the agents that live on them

are depicted in Fig. 1, in which the parallel arrows having

opposite directions (depicted as single-headed arrows)

indicate interactions between agents.

The implementation of the MAFIC approach here is

based on several Java classes organized in the following

categories:

• Agent classes: these classes are used for describing

agent types. The MAFIC implementation utilizes the

classes UAgent, MAgent, LAgent, MCAgent, and

CAgent that implement Uagent, Magent, Lagent,

MCagent, and Cagents, respectively. An agent is

implemented in JADE by extending the provided

Agent base class and overriding the default implemen-

tation of the methods setup() and takeDown().

These methods are automatically invoked by the

platform during the agent life cycle. The setup()

method is intended to include agent initialization, for

instance starting the initial behaviors. The take-

Down() method is invoked to do clean-up operations

before the agent is destroyed.

• Agent activity classes (behaviors): the actual job (or

jobs) an agent has to do is carried out within behaviors.

A behavior is an abstraction that represents a task

performed by an agent. MAFIC uses local classes for

defining behaviors that describe the agent responses to

FIPA messages, such as REQUEST and INFORM. A

behavior is implemented in JADE by extending the

provided Behavior abstract base class. The class

Behavior is the root of a class hierarchy abstracting

various agent behavior types. There is another type of

behavior that is called a CompositeBehaviour, which

is itself a behavior that embeds a number of child sub-

behaviors. It can be considered a simple and clear

approach to implement complex tasks in JADE. Three

types of composite behaviors are provided: a Sequen-

tialBehaviour; an FSMBehaviour; and a ParallelBe-

haviour. The SequentialBehaviour schedules its

children according to a very simple sequential policy.

It starts with the first child and when this is finished, it

moves to the second one and so on. The FSMBehav-

iour schedules its children according to a finite state

machine whose states correspond to the FSMBehav-

iour children. Finally, the ParallelBehaviour schedules

its children in parallel.MAFIC utilizes the FSMBe-

haviour to implement the clustering process in

Cagents. The ParallelBehaviour has been used in

Magent, when it sends a request to the Lagent to show

the clustered image and computes the finish time of

MAFIC in parallel.

• Ontology classes: these classes are necessary for

implementing the agent communication semantics

using concepts and relations. In other words, if agents

need to communicate in a non-meaningless way, they

have to share the same language and know exactly the

meaning of vocabularies that are used in that language.

This means that an ontology is required. An ontology

describes the elements that can be used as content of an

agent’s messages. The ontology is composed of two

parts, a vocabulary that describes the terminology of

concepts used by agents in their space of communica-

tion and the terminology of relationships between these

concepts. These parts describe messages’ semantic and

structure. In MAFIC, two simple ontologies are used:

the ImageOntology, and the clusteringOntology. The

ImageOntology defines the concept of the image and its

related actions, such as the LoadImage action, which is

used by the Magent to the Lagent, to show the image.

The ClusteringOntology defines the concept of cluster-

ing parameters, which are the number of clusters, the

fuzziness, the maximum number of iterations, and the

threshold. In addition, some related actions are

included, such as ApplyClustering by the Magent to

the MCagent, to start the clustering process.

Agents need to communicate with each other, to perform

their tasks. The communication paradigm in JADE is based

on asynchronous message passing. The structure of mes-

sages in JADE is complaint with the structure of messages

in FIPA-Agent Communication Language (ACL), which is

one of the popular languages that have been developed in

MASs [13]. The major aim of FIPA-ACL is to provide the

standard communication language that can be used by

autonomous agents. The FIPA-ACL provides an outer

language, which defines the structure of the message that is

totally separate from content of message. In the outer

language, FIPA-ACL provides a set of performatives (or

communicative acts), to differentiate between the different

types of messages that can be passed between agents.In

addition, formal semantics is supported which should

eliminate ambiguity and confusion.
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6 Experimental results and discussion

The performance of the MAFIC implementation discussed

above is compared with that of the sequential FCM, in

terms of time cost. Both approaches were implemented on

a single machine with 4 GBytes main memory, 3 MBytes

cache memory, and core i5 2.67 GHz CPU with four

(active) cores. The images used in the evaluation are two

sets of 24-bit RGB images of different sizes. Each image is

divided horizontally into four sub-images and vertically as

well. Consequently, the number of clustering agents ðb2Þ is

16. The following parameters are kept fixed: the maximum

number of iterations is 100; the exponent weight ðmÞ is 2;

and the threshold value ðnÞ is 0:001.

The MAFIC and sequential FCM (simply FCM) per-

formances were measured for each image by increasing the

number of clusters and computing the time cost. MAFIC

and FCM were run with each image in 5 trials and the

computation times of MAFIC and FCM were measured in

terms of the mean of the computing time.

Figure 3 gives comparisons between performance times

required to cluster the images of the first set using both

FCM and MAFIC. Figure 4 gives comparisons between the

speedup percentage of MAFIC for the four images.

The first image is a synthetic image with size 1,920 �
1,200, and its computation times using MAFIC and FCM

are shown in Fig. 3a. It can be seen that the best perfor-

mance of MAFIC for this image is achieved when the

number of clusters is 2, where the performance of MAFIC

is 12 times faster than the performance of FCM. Further-

more, the best convergence rate is achieved when the

average number of iterations is 28. For 3 clusters, the

average number of iterations is 39 and the performance of

MAFIC is 9 times better than FCM’s performance. In case

of 4 and 5 clusters the performance of MAFIC is 7 times

better than the performance of FCM and the average

number of iterations is 62. The convergence rate is 100 for

clusters more than 5.

The second image is a satellite image with size 3,685 �
2,635, and the comparison of its computation times is given

in Fig. 3b. The best convergence rate using MAFIC is 52,

which is achieved in case of 2 clusters. Furthermore, the

performance of MAFIC is eight times faster than the per-

formance of FCM.

The performance time comparisons for the third image,

which is a satellite image with size 5,250 � 4,320, are

given in Fig. 3c. The best convergence rate for this image

using MAFIC is achieved for 2 and 3 clusters, with average

Fig. 3 The times comparison for FCM and MAFIC
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numbers of iterations 32 and 68, respectively. The perfor-

mance of MAFIC in case of 2 and 3 clusters are 14 and 7

times, respectively, better than the performance of FCM.

The fourth image is a satellite image with size 7,069 �
4,907, and has been tested only using 2–5 clusters. Com-

parisons based on time using MAFIC and FCM are pre-

sented in Fig. 3d. The average numbers of iterations using

MAFIC are 77 and 82, for 2 and 3 clusters, respectively.

The performance of MAFIC for two and three clusters is

similar and is at least seven times better than the perfor-

mance of FCM. The performance of MAFIC in case of four

and five clusters are six and five times, respectively, better

than the performance of FCM. Figure 5 shows the visual

results of image clustering that can be obtained using

MAFIC.

Table 1 presents percentages that reflect the speeding up

of MAFIC (over FCM) for three of the four tested images.

As can be seen, the best speedup percentage of MAFIC is

always achieved when the number of clusters is \4. For

two clusters in particular, MAFIC always has a conver-

gence rate that is less than the maximum number of

iterations for the four images. For clusters more than 4,

speedup percentages of MAFIC are very close to each

other. As also can be seen from Table 1, the performance of

MAFIC is at least four times better than the performance of

FCM for clusters more than 4. The MAFIC approach,

therefore, outperforms the sequential FCM under the given

settings.

Another set of (synthetic) images of different sizes were

used for the sake of measuring the scalability of the

MAFIC approach with respect to changing the number of

used cores. The performances of MAFIC and FCM were

measured for each image in this set by increasing the

number of clusters while varying the number of cores from

1 to 4, then computing the time cost.

Figure 6 gives comparisons between performance times

required to cluster the second set of tested images using

both MAFIC and FCM. Figure 7 gives comparisons

between the speedup percentages of MAFIC using different

numbers of cores. Each of the following parameters is kept

fixed for Figs. 6 and 7: the maximum number of iterations

is 100; m is 2; c is 8; and n is 0:001. Generally, the per-

formance of MAFIC is improved by increasing the number

of cores. It can be seen in Fig. 6 that the best performance

of MAFIC for this new set of images is achieved when the

number of cores is 4. In contrast to MAFIC, varying the

number of cores does not seem to considerably affect the

performance of FCM. In addition, by comparing Figs. 4

and 7, it can be seen that the performance of MAFIC for

larger images is better than its performance for smaller

images using the same number of cores, which is 4 in our

case.

Figure 8 gives comparisons between the processing

times of MAFIC for the second set of images in case of

eight clusters. It can be observed that the processing time

of MAFIC is proportional to the size of images, and that

Fig. 4 The relation between MAFIC speedup of execution time and

number of clusters

Original image Clustered image, c = 2 Clustered image, c = 5

Clustered image, c = 8 Clustered image, c = 10

(a)

(d) (e)

(b) (c)

Fig. 5 Clustering obtained

using MAFIC
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the approach generally reduces the time cost for the tested

images with the different sizes. The speedup percentages of

MAFIC for images of larger sizes, in particular, are better.

Figure 9 compares the processing times of MAFIC when

applied to an image with size 640� 374, while varying the

number c of clusters to 2, 3, 4, 5, 6, 7, 8, 9, and 10. It can be

observed that the processing time of MAFIC is propor-

tional to the number of clusters. Figures 8 and 9 both show

that the MAFIC approach seems to have the same

performance rate with respect to the size of images and the

number of clusters using different numbers of cores that

range from 1 to 4.

The discussions make it evident that the performance of

MAFIC provides a strong speedup that is at least four times

better than the sequential FCM. This is true even when the

number of clusters exceeds 4 and in cases when the con-

vergence rate reaches the maximum number of iterations

(which is 100). Furthermore, it is worth noting that the

experimental results of MAFIC as a multi-agent approach

are in agreement with results given by Kelash et al. [19],

for instance, who also proposed to use the distribution of

agents as a cluster computing paradigm for multi-agent

applications that employ the interactions among computing

entities [19]. Finally, from the preliminary results, it is

concluded that MAFIC can speedup the overall computa-

tion time for fuzzy image clustering.

7 Comparison with parallel FCM approaches

The previous section compares the results of implementing

the proposed approach with the classical version of FCM

from a statistical analysis perspective. This provides an

initial proof of concept that our approach is more feasible

Table 1 The speedup of MAFIC

No. of clusters Image size

1,920 � 1,200 3,685 � 2,635 5,250 � 4,320

2 12.35 8.54 14.86

3 9.11 4.22 7.63

4 7.19 3.86 4.53

5 7.17 4.01 4.64

6 4.86 4.17 4.64

7 4.71 4.09 4.86

8 4.79 4.08 4.55

9 4.73 4.26 4.82

10 4.79 4.17 4.85

Fig. 6 The times comparison for FCM and MAFIC using different numbers of cores
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by evaluating aspects of experimental performance. The

current section contrasts the MAFIC approach with the

parallel approach of FCM, which uses parallel processors

to reduce the computational load. In addition, it suggests

possibilities of adopting the MAFIC approach to multiple

distributed parallel processors. The section thus highlights

aspects in which the MAFIC approach is different from

other approaches. It further discusses and evaluates the

MAFIC’s performance in comparison with the parallel

FCM approach. The latter approach is undertaken by sev-

eral researchers in the literature, but we restrict the detailed

discussions in this section to [22, 24, 28].

The parallel version of FCM given in [22] is designed to

run on parallel computers of the single program multiple

data (SPMD) model incorporating message passing. The

proposed parallel algorithm is implemented on an Alpha-

Server computing cluster with a total of 128 processors and

64 GBytes of main memory. There are three tests that were

executed to evaluate the performance of this parallel FCM.

The evaluation has been done on five different sizes of a

dataset, which are n ¼ 29, 211, 213, 215, and 217. The first

test measures the speedup percentages and compares them

to the ideal speedup (cf. [22, pp. 371]), where the results

show that the speedup percentages for large values of n are

almost ideal. For small values of n, speedup percentages

deteriorate. The second test measures the performance with

respect to the number of clusters. The dataset with size

n ¼ 217 is used while the number of clusters is changed

with c ¼ 2, 4, 8, 16, and 32. The results show that the

speedup behavior of the parallel FCM algorithm in [22] is

not sensitive to the number of desired clusters. Since

speedup percentages are almost ideal for small values of c,

and close to ideal for large values of c. The third test

measures the performance when dealing with larger data-

sets that use more processors. The results show that an

increase in the size of the dataset can almost always be

balanced by a proportional increase in the number of pro-

cessors used.

In contrast to [22], at least the following aspects dif-

ferentiate the MAFIC approach. The different dataset sizes

that were used are larger. Regarding the ideal speedup in

MAFIC, Figs. 4 and 7 already show that datasets with large

sizes get better speedup percentages than datasets with

small sizes. It can be seen from Fig. 4 that MAFIC

achieves a speedup percentage of more than 4 for clusters

more than 4 using a quad-core processor. For a small size

dataset, a speedup percentage of more than 3 is achieved

for clusters more than 6 using a quad-core processor.

Regarding the performance of MAFIC with different

numbers of clusters, a speedup percentage of more than 8

for small values of c is achieved. For large values of c, a

speedup percentage of more than 4 is achieved. Both

speedup percentages are on a quad-core processor using

large size dataset.

In [24], an implementation of a parallel FCM cluster

analysis tool calculates not only clusters’ centers but also

the optimal number of clusters for a given dataset. There

are several types of tests that were executed, and applied on

two machines: the PC Cluster Mercury that has 16 dual

Fig. 7 The relation between MAFIC speedup and number of cores

Fig. 8 Time measurements for the second set of images with respect

to the number of cores

Fig. 9 Time measurements for different numbers of clusters

J Real-Time Image Proc

123

Author's personal copy



pentium 3, 1GHz processor, and 8 GBytes of total memory;

and the SGI Altix 350 machine that has 14 Intel Itanium 2

CPUs with 28 GBytes of RAM and 360 GBytes of disk

storage [24]. The given dataset consists of a collection of

records and variables, where a record can be seen to cor-

respond to a pixel xk 2 R
p of an image of n pixels,

X ¼ fx1; x2; . . .; xng � R
p, and variables correspond to the

dimension p. The various tests changed both the number of

records and the number of variables for a given dataset. But

since pixels in MAFIC’s sense correspond to records with a

fixed number of variables, only two tests may be related to

fuzzy clustering of images.

One of the tests measures the processing times for dif-

ferent datasets when the number of records increases. The

results show that the processing time grows when the

number of records grows. Another test measures the

speedup percentages of datasets with different numbers of

records (and fixed number of variables) for two clusters.

The results show that the dataset with smaller number of

records get smaller speedup percentages using different

numbers of processors varying from 1 to 6.

The MAFIC approach is not concerned with measuring

the performance on a range of clusters to determine the best

partition for a given dataset. Furthermore, if one lets the

number of records correspond to the number of pixels and

the number of variables to the pixels’ dimension, some of

the used dataset sizes in MAFIC are larger than the ones

used in the parallel algorithm of [24]. The larger the size of

the dataset, the larger the speedup percentages that results

by MAFIC. By comparing the performances of both

MAFIC and the parallel approach for two clusters, it can be

observed that speedup percentages with values between

1:94 and 14:86 result when we use all the tested datasets

(images) of MAFIC on a quad-core processor. By com-

paring the relative sizes of datasets in both MAFIC and

[24], it can also be found that the performance of MAFIC is

better than the performance of the parallel approach for two

clusters. The processing time of MAFIC is analyzed with

respect to the number of used cores. The analysis is in an

agreement with the parallel algorithm, where the process-

ing time is proportional to the size of a dataset. That is,

MAFIC has a fixed rate for all different sizes, as shown in

Fig. 8. In addition, MAFIC reduces the processing time for

all datasets using a quad-core processor.

The parallel FCM algorithm in [28] is designed for an

Open Source Cluster Application Resource cluster with

nine nodes using SPMD model and MPI. Three images of

different sizes are used to measure the performance of the

parallel FCM algorithm. All images are segmented to a

black and a white cluster. The size of images has been

reduced by a factor of three, where RGB is converted to

gray scale. The first image is 24-bit RGB image with size

270� 200. The speedup percentage for two processors was

1:1, and for seven processors the speedup percentage has

been increased by no more than 2:2. By increasing the

number of processors the speedup percentage decreases

again. The size of the second image is 800� 600. The

parallel FCM implementation took about 1:55 s with nine

processors which gives a speedup percentage of 8. The

third image has size 2,580 � 1,720. The parallel FCM took

12:90 s which achieves a speedup percentage of 8:97.

By comparing the two implementations of MAFIC and

[28], one notices the following. MAFIC has been tested on

images of large sizes, whereas the parallel FCM has been

tested on images with small sizes. The experimental results

in [28] did not measure how well the parallel FCM per-

forms in speedup when the number of clusters increases.

The results are restricted to a black and a white cluster. The

scalability of the number of clusters has been tested in

MAFIC (see Figs. 4, 9). MAFIC achieved a better speedup

percentage than the parallel FCM for large image sizes in

case of two clusters using a quad-core processor.

By contrasting the MAFIC approach with the parallel

approaches of FCM, one may conclude that the MAFIC

approach shares an essential similarity with the SPMD parallel

model implemented on a multi-core processor. The b2 Cagents

do exactly the same task on different parts of an image. Thus, a

parallel implementation of the proposed method can be adopted

to multiple distributed parallel processors.

Two of the basic forms of multiprocessor systems are

parallel systems and distributed systems which can be used

with some overlap. A parallel system is usually one in

which the processors are closely connected, whereas a

distributed system is one in which the processors are

independent of each other [5]. The MAFIC approach can

be adopted to a multiple distributed processors-based par-

allel system. One possibility would be to distribute b2

Cagents among b distributed parallel processors connected

via a network. Each one of the b processors can be a multi-

core processor and handles b Cagents. The communica-

tions between the b2 Cagents can be done through the

MCagent, as described earlier in the MAFIC method (see

Sect. 4), where the MCagent will be on one of the b pro-

cessors. In this case, b2 Cagents communicate by accessing

only one processor on which the MCagent resides. As the

main concern in distributed systems is the communications

between multiple processors, the communications between

multiple distributed parallel processors can be improved by

dividing the communications between b processors into

pairs. In this case, one processor of each pair collects and

combines its partner’s values. Each one of the b processors

has b Cagents and one of them acts as the MCagent in the

MAFIC method. In other words, bCagents communicate

with each other through one of them that is called the

master. The latter does the tasks of the MCagent as
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described in steps 4.3., 4.4., and 5 of the MAFIC method

(see Sect. 4).

An alternative solution would be to distribute the b2

Cagents among the b2 distributed parallel processors,

where each Cagent resides on one processor. The com-

munications between the b2 Cagents can be done through

the MCagent, as described in the MAFIC method. In such

case, the MCagent resides on a processor which is different

from the other b2 processors. The communications can also

be done in pairs. In this solution, one needs to pay more

attention to the communications between multiple distrib-

uted processors. The more Cagents we have, the more

processors we need. This can lead to more communica-

tions, which is not a desired property. The cost of com-

munications exceeds the cost of computation itself. Thus,

the number of Cagents should be limited. One of the

benefits of using multiple distributed processors is that

each processor has an independent memory. This increases

the capacity of the used main memory and reduces the

access to a secondary storage. Therefore, datasets with very

large sizes can easily be tested.

8 Conclusion

In this paper, MAFIC has been introduced as a new multi-

agent-based fuzzy c-means image clustering approach. An

experimental perspective is undertaken to thoroughly dis-

cuss preliminary analyses and evaluations of the approach.

One implemented feature of MAFIC is distributing the

computation of membership function and cluster centers

among several interacting agents. Thus, it improves the

performance of the sequential FCM algorithm, which is

one of the most widely used fuzzy clustering methods.An

implementation of MAFIC has been tested on two sets of

24-bit RGB images, and the experimental results show that

it outperforms FCM in terms of the time needed for the

clustering process. MAFIC is at least four times faster than

FCM for clusters more than or equal 4, in particular, for the

largest four images that have been tested. In addition, it is

obvious that the multi-agent-based approach utilizes

desirable features for the MAFIC approach, such as effi-

ciency in computation, modularity, scalability, reusability

and distributed computation.

The proposed approach can be applied to the hard clus-

tering algorithm (k-means), so as to speedup the computation

time. As indicated in [8, 23, 26], FCM can be used to achieve

a higher retrieval performance for CBIR systems. The

MAFIC algorithm can be efficiently used for applications,

such as image segmentation and CBIR. The process of fast

archiving of clusters’ features of images is an important step

for CBIR, and needs to be further studied in future work.
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