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Abstract

This paper enumerates according to height the classes of unlabeled N-free posets, interval
orders, and posets that are both N-free and interval orders. The last two classes are enumer-
ated according to height in terms of generating functions. We apply an algorithmic method for
height counting of connected N-free posets. Numerical results for n-element posets of height %,
1 <k <n < 14, are included.
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1. Introduction

The enumeration of various classes of posets is an interesting combinatorial prob-
lem for which several techniques have been applied. Numerous results ranging from
exact and algorithmic counting to asymptotic estimates appear in the literature, see
[1-5,10,12,13]. A related interesting problem is to count classes of posets according to
the height of poset. Few studies are present in this field. For example, the generating
function for height counting of unlabeled series—parallel posets have been derived in
[6]. In the same paper, the authors gave a general technique for height counting of a
class of posets closed with respect to series and parallel compositions provided that
the height counting of irreducible posets in the class is known. This technique was
applied in [11] to obtain the number of unlabeled prime, UPO, and general posets on
n elements with height k, for 1 <k <n < 12.
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In this paper, we consider the classes of N-free posets, interval orders, and posets
that are N-free and interval orders at the same time. The last two classes are enu-
merated according to height in terms of generating functions. We apply an algo-
rithmic method for height counting of connected N-free posets. A technique sim-
ilar to that in [6] is derived. Then it is applied to get the results for N-free
posets.

The paper consists of five sections. In Section 2, we give the basic definitions. Sec-
tion 3 contains the height counting of unlabeled interval orders according to height.
Sections 4 and 5 deal with unlabeled N-free interval posets and N-free posets, respec-
tively. Finally, the appendix contains numerical results for posets in the above classes
with n elements and height £, for 1 <k <n < 14.

2. Basic definitions

Let P = (V, <) be a poset where V is a finite non-empty set and < is a partial
order defined on V. A subset X of P is called a chain if for every u,v€X either
u<vorv<u While X is called an antichain if for every u,v € X neither u < v nor
v < u. The height of an element u € P, denoted by A(u), is the maximum cardinality
of a chain in P having u as its maximum element. The height of P is defined as
h(P) = max{h(u): u€P}.

The poset P is said to be an interval order if each element v € P can be represented
by an interval /, of the real line such that v < w if and only if /, lies entirely to the
left of I,,. It is known [7] that P is an interval order if and only if P does not contain
two parallel edges, i.e., an induced subposet of four elements a,b,c,d with a < ¢ and
b < d (the only comparabilities), see Fig. 1(a). Another characterization of interval
orders is as follows: For u € P, let D(u)={v € P: v < u} be the set of predecessors of
u. Then P is an interval poset if and only if the sets of predecessors of the elements
of P are linearly ordered by inclusion.

A poset P is called N-free if its directed covering graph has no induced subgraph
isomorphic to the digraph N shown in Fig. 1(b).

There are two useful representations of an N-free poset, namely the block- and the
matrix-representation, see [1,14]. Assume that P is N-free. By a block of P we mean a
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Fig. 2. An N-free poset P and its block-representation.

maximal complete bipartite graph in the directed covering graph of P. More pre-
cisely,a block of P is a pair (4,B), where 4,B C P are such that 4 is the set
of all upper covers of every v€B and B is the set of all lower covers of every
u€A. By convention, (MinP,()) and (), Max P) also are blocks where MinP and
Max P are, respectively, the sets of minimal and maximal elements of P. The ex-
istence of blocks in an N-free poset is guaranteed by the well-known fact that for
any two elements u, v of such a poset, the sets of lower covers (and the sets of up-
per covers) of u and v are either disjoint or identical. On the other hand, a poset
which is not N-free might not contain proper blocks at all, e.g., the poset N in
Fig. 1(b).

Let (4,,B1),...,(A4,By) be all the blocks of P. Then, the sets 4;’s form a parti-
tion of P and so do the B;’s. We shall always assume that the blocks of P are or-
dered such that for any v€ P, if v€ 4; and v € B; then i < j. The block-representation
of P is a 2 x k matrix with the A4;’s in its first row and the B;’s in the second
row ordered as above. This is illustrated in Fig. 2. Clearly, every N-free poset has
a block-representation that is unique up to a possible permutation of its
columns.

The matrix-representation of P is the k x k matrix M(P) = [my;], where m;; =
|[4; N B;|. The matrix M(P) is unique up to a possible permutation ¢ applied si-
multaneously to its rows and columns. The above prescribed order of the blocks
implies that m;; = 0 whenever 7> j, thus M(P) is a strictly upper triangular
matrix.

In [1], it was proved that an N-free poset P is also an interval order if and only
if M(P) has no zeros on the super diagonal, i.e., m; ;1 # 0 for each i=1,...,k — 1.
In this case the matrix M(P) is unique. Fig. 2 shows an N-free interval poset whose
matrix-representation is given in Fig. 3.
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Fig. 3. The matrix representation of P.

3. Height counting of interval orders

In [5], El-Zahar enumerated labeled and unlabeled interval orders. His method fol-
lowed Hanlon’s technique for counting labeled and unlabeled interval graphs [8]. For-
tunately, the generating functions derived in [5] can easily be modified to account for
height. We shall here introduce this modification for counting unlabeled interval orders
according to height. Referring to [5], we recall and introduce the following definitions.

An interval poset P is called reduced if no two maximal elements of P have the same
set of predecessors. A maximal element v € P is called a chief element if h(v) = h(P),
while if 4(v) < A(P) then v is called an assistant element. Let P be a reduced interval
poset with height £ and having n non-maximal elements, » assistant elements, and s
chief elements. We give P the weight y"z’w'h*. We define the generating function

Grzwh)= Y guad"Z Wi,

n,r =0
s, k=1

where ¢, denotes the number of unlabeled reduced interval posets with weight
y'Z"w*hF. Now, we describe how reduced interval posets are built from smaller ones.
For each reduced interval poset P, let the leader element, /(P), denote the unique
maximal element u € P whose set of predecessors, D(u), is maximum. In other words,
[(P) is the unique element of P which is larger than all its non-maximal elements.
Obviously, A(I(P)) = h(P). The predecessor of P is defined to be the reduced interval
poset obtained from P by deleting /(P) and identifying all pairs u;,u, of maximal ele-
ments in P — /(P) having D(u;)=D(u,). Conversely, let O be a reduced interval poset
with #(Q) = k. To obtain all reduced interval posets P having Q as their predecessor,
we proceed as follows:

1. We add a new element /(P) larger than each non-maximal element of Q; /(P) will
have weight w.
2. All non-maximal elements of Q will remain non-maximal in P, i.e., keep their
weights.
3. For an assistant element v of O with weight z, there are three possibilities:
(i) v remains assistant with weight z,
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(ii) v splits into non-maximal elements vy,...,v;, t = 1, where v; < [(P) for each
1 <i < ¢; thus the weight z of v is replaced by )’,
(iii) v splits into vy, vy,...,0;, t = 1, where vy remains assistant and v; < /(P) for
1 <i < t; thus the weight z of v is replaced by zy'.
To account for all possibilities, we replace the weight z of v by

z—i—Zyt—&—zZyt:Hiy.

1 —
t>1 t>1 Y

4. For a chief element v of O with weight w, there are two subcases.
(a) A(P) = h(Q). In this subcase, the only possibility for v is to remain a chief
element without splitting; thus keeping its weight.
(b) A(P)=h(Q)+ 1. Here there are three possibilities:
(i) v remains a maximal element. Since A(v) < A(P), then v becomes an
assistant element and its weight is replaced by z,
(i1) v splits into non-maximal elements vy,..., v, thus its weight w is replaced
by ',
(iii) v splits into vy, vy,...,0;, t = 1, where vy is an assistant maximal element

and v; < I[(P) for each 1 < i <¢. Thus the weight w of v is replaced by
t

zy'.
In conclusion, the weight w of v is not changed if A(P)=h(Q) and is replaced by

Z+Zyt+zzyz:% if h(P)=h(Q) + 1.

t>1 t=1

We note that 2(P)=h(Q)+1 if and only if /(P) covers at least either a chief element v
of O or a non-maximal element arising from the splitting of a chief element. Otherwise,
h(P) = h(Q).

Assume now that O has weight y"z’wshk . Let E\(y,z,w,h) and E,(y,z,w,h) denote,
respectively, the weight enumerators of reduced interval posets having O as their pre-
decessor and of height, respectively, k + 1 and k. The following two lemmas calculate
these two enumerators.

Lemma 3.1 Ei(y,z,w,h) = y"((z + »)/(1 = »)Y (((z + »)/(1 = »))* — 2 )wh*".

Proof. Let P be a reduced interval poset with height £ + 1 and having QO as its
predecessor. Since A(P) > h(Q), then the only chief element of P is /(P). Furthermore,
not all chief elements of QO remain maximal without splitting in P, since otherwise we
would have h(P)=h(Q). This explains the subtraction of the term z* in the substitution
for w*. The substitutions for y" and z" follow respectively from (2) and (3) above. [

Lemma 3.2. E>(y,z,w,h) = y"(((z + »)/(1 — )Y — 2 w1k,
Proof. Suppose that P is a reduced interval poset with height £ and having Q as its

predecessor. Since P is reduced, then not all assistant elements of Q remain assistant
without splitting in P, since otherwise, /(P) and /(Q) would have the same set of
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predecessors. Therefore, the term z” is replaced by ((z+y)/(1—y)) —z". The remaining
terms are straightforward. [

As a result of the preceding two lemmas, G(y,z, w, 1) satisfies the following equation.

Theorem 3.3.
Gy, 2w, h) = wh + wh (G (y,Z+y,Z+y,h) e (y,z+y,z,h>>
l—y 1—-y -y
+w (G (yfywh) - G(y,z,w,h)) . (1)
-

Proof. The term wh on the right-hand side accounts for the single-element poset which
has no predecessor. Every other reduced interval poset has a unique predecessor and
therefore its weight appears exactly once in X(E,(y,z, w,h)+ E»(y,z,w,h)), where the
summation is taken for all n,» > 0 and s,k > 1. The required result now follows. [

Let G*(x,h) = oy <, GiX"h*, where g denotes the number of unlabeled interval
posets having n elements and height k. Each interval poset P is obtained from a unique
reduced interval poset P’ by replacing some maximal elements of P by antichains and
this operation does not increase its height. The generating function of all antichains is
x/(1 — x).Therefore, we have

Theorem 3.4.
G (,h) =G <x1x x h) . 2)

—x1-x
Eq. (1) can be used to recursively calculate the coefficients g, and from (2) we
can then calculate g;,. We obtain
G(y,z,w,h) = wh + ywh* + (yzw 4+ y*w)i> + y*wh> + (YPzw + VP w + y*w?i?
+ 3y w + 222wl + Y wht + -

G*(x,h)y=xh +x*(h+ 1) + > (h+ 30> + B3+ x* W+ Th? + 60> +h*) + -+ .

The values of g, for 1 <k < n < 14 are included in Table 1 of the appendix.

4. Height counting of N-free interval posets

In this section, we consider unlabeled posets which are simultaneously N-free and
interval order. This class of posets was first introduced in [1] in order to prove that
almost all N-free posets are not series—parallel (posets obtained from the single-element
poset by series and parallel compositions). As proved in [1], a poset is N-free inter-
val order if and only if its matrix-representation has no zeros on the super diagonal.
Therefore, there exists a one-to-one correspondence between N-free interval posets
and their matrix-representations. Furthermore, an N-free interval poset is rigid, i.e.,
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has no non-trivial automorphism, if and only if its matrix-representation has no ele-
ment larger than one, see [1]. In Fig. 2, we give a rigid N-free interval poset whose
matrix-representation is illustrated in Fig. 3.

To enumerate unlabeled rigid N-free interval posets according to height, we introduce
the following generating function. Let J(x,h) =", >;_, jux"h*, where j,; denotes
the number of unlabeled rigid n-element N-free interval posets with height k. The
numbers j,; are given by:

Lemma 4.1.

. k(k — 1))2 .
Ink = n—k . ( )

Proof. Let P be a rigid N-free interval poset with n elements and k + 1 blocks. Then,
M(P) = [m;;] is a unique 0—1 matrix of order k£ + 1 in which all the (i,i + 1) entries
are 1’s. This implies that [4; N B;;1| =1 for each i =1,...,k. Therefore, the ith block
must precede the (i + 1)th block, i =1,...,k, in any block representation of P. Let v;
be the unique element of 4, N By, i=1,...,k. Then v; < v, <--- < v is a unique
maximum chain of length £ — 1 in P and so the height of P equals %.

Now the matrix-representations of P, which is of order k + 1, has zero’s on and
below its diagonal, its super diagonal consists of exactly k& one’s and the remaining
elements are either 0 or 1. Note that there are exactly » non-zero entries since the
poset has n elements. Thus there are (k(/j:k)/ 2) ways to choose the non-zero elements
above the super diagonal. Therefore, j,; = (k(/j;lk)/ %) which completes the proof of the
lemma. [J

Let J*(x,h) = >,o1 Do jux"h* where j% denotes the number of unlabeled n-
element N-free interval posets with height k. An N-free interval poset is obtained from
a rigid one by substituting antichains for some of its elements. Therefore, we have

Theorem 4.2.

T h) =J (x h> . (4)

1 —x’

Egs. (3) and (4) can be used to recursively calculate j,. The numerical results for
1 <k < n <14 appear in Table 2 of the appendix.

5. Height counting of N-free posets

The enumeration of N-free posets according to height is achieved through an algorith-
mic method. We designed an algorithm to generate matrix-representations of n-element
N-free posets in a certain order and count the corresponding posets up to isomorphism
according to height. To reduce the running time, we counted only those matrices that
represent connected N-free posets. We shall not give the details of the algorithm here
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but the result is that we get v,;, the number of connected n-element unlabeled N-free
posets with height k. To get the number, f,;, of unlabeled N-free posets having n
elements and height &k, we derive the relations between v,; and f,;. Actually, these
relations are similar to those given in [6]. Define the generating functions:

V(x,h) = i Z X" = i Vi(x)h*
k=1

n=1 k=1
and

(oo} n o0
Foh)y=> 3" fux"h =" Fi(x)ht.
n=1 k=1 k=1

Let e, denote the number of n-element unlabeled N-free posets with the property
that each component of which has height k. Define the generating function:

E(x,h) = i Z e X" hF = iEk(x)hk.
k=1

n=1 k=1
As a direct consequence of Riddell’s Theorem [9, p. 90], we get

Lemma 5.1. 1+ Ex(x) =exp Y (Vi(x))/i.
The following theorem calculates Fj(x) in terms of Ej(x).
Theorem 5.2. Fi(x) = (1+ Y\~ Fj(x))Ex(x).

Proof. Let P be an N-free poset of height k. Then P can be uniquely written as the
parallel composition P=QU P, where Py is an N-free poset each component of which
has height k£ and Q is a (possibly empty) N-free poset of height j for some 1 < j < k.
Now, the term 1 + Zj:l] Fj(x) counts the posets O (including the empty one) in this
representation, while the posets P; are counted by Ej(x). This implies the required
result. [J

Finally, we outline the procedure for calculating the numbers f,;, kK <n. As we
mentioned earlier, a computer program were used to calculate the coefficients v,;. We
then apply Lemma 5.1 to obtain e,;, £ < n. Using Theorem 5.2, we can recursively
calculate f,;. The numerical results for vzand f, 1 <k < n < 14 are given respec-
tively in Tables 3 and 4 in the following appendix.
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Appendix

Tables 1-4 give the number of n-element unlabeled posets of height k(1 <k <n<14),
which are, respectively, interval order, N-free interval order, connected N-free, and
N-free.

Table 1
The number of n-element unlabeled interval orders of height &, 1 <k <n < 14

k 1234 5 6 7 8 9 10 11 12 13 14
1 1111 1 1 1 1 1 1 1 1 1 1
2 137 15 31 63 127 255 511 1023 2047 4095 8191
3 1 6 26 100 366 1317 4743 17275 64029 242371 938741 3723210
4 1 10 69 412 2305 12551 67933 370168 2046980 11546918 66665327
5 1 15 150 1270 9920 74525 551232 4072130 30322587 228997375
6 1 21 286 3236 33301 325860 3109628 29395997 278111527
7 1 28 497 7210 93926 1151416 13644127 158939927
8 1 36 806 14540 232891 3477454 49791316

9 1 45 1239 27147 522840 9308502
10 1 55 1825 47665 1084540
11 1 66 2596 79596
12 1 78 3587
13 1 91
14 1

Total 1 2 5 15 53 217 1014 5335 31240 201608 1422074 10886503 89903100 796713191

Table 2
The number of unlabeled n-element N-free interval posets of height £, 1 <k <n <14

k 1 23 4 5 6 7 8 9 10 11 12 13 14
1 I 111 1 1 1 1 1 1 1 1 1 1
2 1 3 6 10 15 21 28 36 45 55 66 78 91
3 1 6 21 56 126 252 462 792 1287 2002 3003 4368
4 1 10 55 220 715 2002 5005 11440 24310 48620 92378
5 1 15 120 680 3060 11628 38760 116280 319770 817190
6 1 21 231 1771 10626 53130 230230 888030 3108105
7 1 28 406 4060 31465 201376 1107568 5379616
8 1 36 666 8436 82251 658008 4496388
9 1 45 1035 16215 194580 1906884

10 1 55 1540 29260 424270

11 1 66 2211 50116

12 1 78 3081

13 1 91

14 1

Total 1 2 5 14 43 143 510 1936 7775 32869 145665 674338 3251208 16282580
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Table 3

The number of n-element unlabeled connected N-free posets of height £, 1 <k <n <14

k 1 23 4 5 6 7 8 9 10 11 12 13 14
1 1
2 1 23 4 5 6 7 8 9 10 11 12 13
3 1 5 17 45 115 278 679 1666 4167 10591 27452 72301
4 1 9 50 218 851 3161 11507 41837 153158 567427 2131683
5 1 14 114 709 3818 19042 91383 431375 2029244 9583860
6 1 20 224 1867 13113 83222 497913 2883579 16436980
7 1 27 398 4276 37898 297293 2157924 14923081
8 1 35 657 8845 96614 918526 7952292
9 1 44 1025 16913 223496 2536157
10 1 54 1529 30369 478118
11 1 65 2199 51787
12 1 77 3068
13 1 90
14 1
Total 1 1 3 9 31 115 474 2097 9967 50315 268442 1505463 8840306 54169431
Table 4
The number of n-element unlabeled N-free posets of height £, 1 <k <n <14
n
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1111 1 1 1 1 1 1 1 1 1 1
2 1 3 7 13 25 43 76 128 216 354 583 937 1505
3 1 6 24 77 228 644 1776 4854 13184 35819 97408 265845
4 1 10 61 291 1229 4872 18711 70858 267337 1010627 3842536
5 1 15 130 856 4840 25107 124167 599133 2860982 13639325
6 1 21 246 2136 15543 101538 621216 3656776 21077891
7 1 28 427 4733 43120 346187 2559866 17954298
8 1 36 694 9577 106963 1036689 9120021
9 1 45 1071 18031 242694 2799313
10 1 55 1585 32011 511830
11 1 66 2266 54121
12 1 78 3147
13 1 91
14 1
Total 1 2 5 15 49 180 715 3081 14217 69905 363926 1996922 11500336 69269925
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