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Abstract 

The number of unlabeled 2-dimensional posets is recursively calculated. This counting makes 
use of the relationship between permutations and posets of dimension two. 

1. Introduction 

In 1988 El-Zahar and Sauer [2] proved that the number of pairwise non- 

isomorphic 2-dimensional posets on n elements is asymptotically in!. Recently, 

Winkler [S] extended this result to labeled 2-dimensional pose& and showed that the 

number of such posets on n elements is (1 +o(n))n!‘/(2&). 

It is our purpose here to describe an exact counting, though recursive, of unlabeled 

2-dimensional posets. This counting exploits the relationship between 2-dimensional 

posets and permutations. In fact, we are merely counting certain classes of per- 

mutations. From this counting we arrive at the number of prime 2-dimensional posets. 

P6lya’s enumeration theorem [3] and results of Stanley [4] are then applied to 

calculate the number of unlabeled posets having dimension two. 

2. Preliminaries and basic definitions 

The dimension [l] of a partially ordered set (poset) P is the minimum number of 

linear extensions of P whose intersection is the ordering of P. Such linear extensions 

form a realization of P. 
Let P be a 2-dimensional poset on n elements. Each linear extension L of P 

can be viewed as a bijection from P onto the set [n] = { 1, 2, . , n}, namely if 
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L={a1< ... <a,} then L(ai) = i. Assume that (L,, L2) is a realization of P. Let S, 

denote the Symmetric group on [n]. Following [2], we define a permutation 

a(L1, &)ES, by a(L,, ~5,)= L,L; ‘. We say that a(L1, L2) corresponds to the poset 

P. Conversely, each @ES, corresponds to some 2-dimensional n-element poset P; 

namely, if L, = { 1 < ... <n} and Lz = {o(l) < ... < o(n)} then (L,, L,) is a realiz- 

ation of P and o(Lt , L,) = a. This correspondence between permutations and posets is 

many-to-one. In fact a(Lz, L,)=(a(L,, Lz))-’ and, thus a 2-dimensional poset might 

correspond to more than one permutation. 

However this correspondence behaves well when restricted to the so called prime 

posets. Let A be a subset of a poset P. A is called P-autonomous if for every x1, X~EA 

and ~EP\A we have: 

(a) x1 <y if and only if x,<y, 

(b) y<xl if and only if yv<x2. 

The poset P is called prime if it does not contain an autonomous set A with 

1 < 1 Al < 1 P 1. The following proposition was proved in [2], see also [S]. 

Proposition 2.1. If P is a prime 2-dimensional poset then P has a realization (L,, L,) 

which is unique up to the order of L1 and L2. 

Permutations corresponding to prime 2-dimensional posets can be easily character- 

ized. Let CJES, and assume that X E [n] is an interval of the form 

X={i,i+l, . . . , i+j). We say that X is a consecutioe set of 0 if the set 

a(X)= {o(i), . . . , a(i +j)) is an interval of [n]. 

Proposition 2.2 ( [2, 51). Let (L, , L,) b e a realization of the two dimensional poset P. 

Then P is prime [j-and only ifo(L,, L,) has no proper consecutive set. 

The above proposition will be used in the following sections to calculate the 

number of prime 2-dimensional posets. We devote the rest of this section to describing 

how the class of 2-dimensional posets is built up from prime 2-dimensional posets 

using the operations of the substitution composition and the series and parallel sums. 

Let P and Q be two disjoint posets and let XEP. The poset Ps;’ is obtained from P by 

replacing the element x by the poset Q such that for every ~EQ and ZEP\ {xl; z < y if 

and only if z <x and y < z if and only if x <z. This operation is called the substitution 

composition. Clearly, in this case, Q will be an autonomous set in PC. 

Again let P and Q be two disjoint posets. Their parallel sum (or disjoint union) is the 

poset P + Q defined on the union of their ground sets by 

(1) if x, yEP and xdy in P then xQy in P+Q, 

(2) if x,yEQ and x<y in Q then xdy in P+Q. 

The series (or ordinal) sum P @ Q is the poset defined on the union of their ground sets 

satisfying (1) and (2) above and the further condition 

(3) if XEP and ~EQ then x by in P 0 Q. 
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A poset P is called (+, @)-irreducible if it is not the series or parallel sum of two 

smaller posets. Clearly if P is a prime poset, XEP and Q is any poset then Pz is 

(+ , @)-irreducible. 

It is well known that the operations of series and parallel sums and substitution 

composition preserve the dimension. We record this fact as the following. 

Proposition 2.3. Let P and Q be two 2-dimensional posets and let XEP. Then each of 

P + Q, P @ Q and Pz has dimension two. 

3. Prime permutations 

We shall say that a permutation cr is a series, parallel, (+, @)-irreducible or prime 

permutation if the poset corresponding to 0 has the respective property. We make 

these definitions more precise as follows. 

Let CJES, and YES,. Then their sum is the permutation 0 0 ZES,+, defined by: 

(a 0 7) (i) = 
i 

44 if lQi<n, 

z(i-n)+n if n+ l<i<n+m. 

Their parallel sum is the permutation cr+r~S,+, satisfying: 

(a+z)(i)= 
i 

m+a(i) if ldi<n, 

z(i - n) if n+l<ibn+m. 

Notethattheseoperationssatisfy(a+z)-’=z-’+a-’and(oOz)-‘=o-1Oz-’. 

Let j~[n]. Then oJ is the permutation I~ES,+,_~ defined by: 

O(i)= r(i-j+l)+o(j)-1 if j<i<j+m-1, 

: 

44 if i<j and a(i)<a(j), 

a(i)+m- 1 if ic j and o(j)<a(i), 

a(i-m+ 1) if j+m<i<n+m-1 and a(i-m+l)<a(j), 

g(i-m+l)+m-1 if j+mQibn+m-1 and a(j)<a(i-m+l). 

We say that a; is obtained from a by substituting r and j. These permutations are 

illustrated schematically in Fig. 1. 

In other words, if a and T correspond respectively to the posets P and Q, then a @ z, 

a + z and a; correspond respectively to the posets P 0 Q, P + Q and P$! where XEP is 

the element corresponding to jE[n]. 

A permutation 8 is called a series or parallel permutation if it has respectively the 

form a 0 z or a + z for some a and r. Otherwise 8 is (+, @)-irreducible. Furthermore, 

19 is said to be prime if it does not have the form a; for some a, z and j. 
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We introduce the following generating functions: 

F*(x)= c j-.*x”, 
n21 

V*(x)= c u.*x”, 
II31 

U*(x)= c UZX”, 
nbl 

Z*(x)= 1 in*x”, 
fI31 

P*(x)= c PZX”. 

nbl 

These are respectively the generating functions for all permutations, series, parallel, 

(+, @)-irreducible and prime permutations. Of course we have 

fn*=n! (3.1) 

Lemma 3.1. (a) F*(x)= V*(x)+ U*(x)+I*(x), 

(b) I’*(x)=(F*(x)- I’*(x))F*(x), 

(c) u*(X)=(F*(X)-U*(X))F*(x), 

(d) I’*(x) = U*(x). 

Proof. (a) is clear. Now, let (3 be a series permutation. We can write 

8=f3ioe28 ... 0 0, where each Oj is a non-series permutation. Moreover this 

representation is unique. Thus 0 can be written in a unique way as 13 = c 8 z where z is 

some permutation and (r is a non-series permutation. The generating function for 

non-series permutation is F*(x)- V*(x). This proves (b). In a similar way we can 

prove (c). Finally (d) follows from (b) and (c). 0 

Lemma 3.2. I *(x) = x + P* (F * (x)), 

Proof. Let OES, be a prime permutation. The generating function for all permutations 

obtained from CJ by the substitution operation is (F*(x))” since every such permuta- 

tion has the form af’* :.. p,‘” where r,, TV, _. . , z, are arbitrary permutations. From this 

the lemma follows. ‘0’ 
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Lemma 3.1 together with Eq. (3.1) can be used to calculate recursively II,*, u,* and 

i,*. Then using Lemma 3.2 we can calculate P,*. 

Recall that an involution is a self-inverse permutation. Let GE& be an involution. 

An element ie[n] is aJixed element of o if o(i) = i. A pair of distinct elements i,je[n] is 

a conjugate pair if o(i)=j (and a(j)= i). 

Let F*(y,Z)=Cj,k~Of~kyjZzk where f& is the number of involutions aESj+zk 

having j fixed elements and k pairs of conjugate elements. Thenf;, is the number of 

permutations having the cycle type 1’ 2k. Hence 

f* $+W 
J*k J! k!2“ ’ 

.(3.2) 

Let us further introduce the generating functions: 

v*(y,z)= c vj*,kyjZ2k, 
j.k>O 

U”(y,z)= c dkYjZZk, 
j,k30 

Z*(y,z)= 1 iTkyjzzk, 
j,k20 

P*(y,z)= c PkYjZZk, 
j,kbO 

where v T J,k, uzk, izk and Pj*.k are respectively the number of series, parallel, (+, @)-irre- 

ducible and prime involutions of cycle type 1’ 2k. 

Clearly we have 

F*(Y,z)= v*(Y,z)+~*(Y,z)+~*(Y,z). (3.3) 

Lemma 3.3. V*(y,z)=(F*(y,z)- V*(y,z))F*(y,z). 

Proof. Similar to part (b) of Lemma 3.1. 0 

Lemma 3.4. U*(y,z)=(F*(z’)- U*(z’))(l +F*(y,z)). 

Proof. Let 8 be a parallel involution. Write 8=8r +8, + ... +8, where each Bi is 

a non-parallel permutation. Since e- 1 = e; l+ .. . + 8; l+ 8 ; l. Let fr= 8, and 

z=e2+ ... +e,_, (for k>2). Thus 0 can be written in either the form o+z+a-’ (if 

k > 2) or the form o + O- ’ (if k = 2) where o is a non-parallel permutation and z is an 

involution. The absence of z is accounted for by the term 1 in the second bracket. 0 

Lemma 3.5. 1*(y,z)=P*(F*(y,z),(F*(~~))‘~~). 

Proof. Let cr be a prime involution with cycle type 1j2k. Consider any involution 

8 obtained from o by the substitution operation. Then 8 is constructed from 0 by 
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substituting an involution for fixed elements and a pair T and r- ’ for some permuta- 

tion r for each pair of conjugate elements. Therefore, the generating function for all 

involutions obtained by substitution from c is (F*(y, z))j(F*(~‘))~. The lemma now 

follows. 0 

Equations (3.2) and (3.3) and Lemmas 3.3, 3.4 and 3.5 can be used to calculate 

recursively V*( y, z), U *(y, z), I *(y, z) and P*(y, z). In the following section we shall 

use P*(x) and P*(y, z) to calculate the number of unlabeled 2-dimensional posets. 

4. Two-dimensional posets 

Let us introduce some more generating functions. Let 

V(x)= c V”X”, 
II>1 

U(x)= c l&x”, 
iI31 

Z(x)= c i”X”, 
II31 

P(x)= 1 P,x” 
II>1 

wheref,, v,, u,, i. and P, denote respectively the number of total, series, parallel, 

(+, @)-irreducible and prime unlabeled 2-dimensional posets with n elements. 

Theorem 4.1. P(x)=i(P*(x)-P*(x,x))+P*(x,x). 

Proof. Let c be a prime permutation. From Proposition 2.2, the poset corresponding 

to o is then prime. Note that both CJ and 0-l correspond to the same poset. The 

theorem now follows since P*(x, x) and P*(x)-P*(x, x) are the generating functions 

for prime involutions and prime permutations which are not involutions. 0 

Lemma 4.2. Let P be a prime 2-dimensional poset and denote by r(P) its automorphism 
group. Then jr(P)1 ~2. 

Proof. Let L1, Lz be the unique linear extensions of P which form a realization of P. 
Assume that ZET(P). Then (L,z, L22) is also a realization of P. Therefore either 

L1 T = L1 and Lzz = Lz or L1 z = L, and L2z = L1. In the former case r is the identity 

and in the latter case z is an involution of P. This shows that r(P) have at most two 

elements. 0 
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Let P be a prime 2-dimensional poset. Assume that P has a non-trivial automor- 

phism group I(P), say I’(P)= {id, r}. An element XEP for which 7(x)=x will be called 

a jixed element and a pair of distinct elements x, y for which r(x) = y and z(y) = x will 

be called conjugate. If P has the trivial automorphism group then, by convention, all 

elements of P are considered to be fixed. 

Let P(y,z)=Cj,k$~ Pj,kyiZzk where Pj,k is the number of prime unlabeled 

2-dimensional posets having j fixed elements and k pairs of conjugate elements. We 

can re-state Theorem 4.1 as the following. 

Theorem 4.3. P(y,z)=J(P*(y)-P*(y,y))+P*(y,z). 

Lemma 4.4. z(x)=x++&kao Pj,k(Fjf2k(X)+Fj(X)Fk(X2)). 

Proof. Let P be a prime 2-dimensional poset with j fixed elements and k pairs of 

conjugate ones. Then the automorphism group, r(P), of P will have the cycle index 

From Polya’s enumeration theorem (see for example [2, Ch. 3, p. 35]), the 

generating function for all 2-dimensional posets obtained from P by the substitution 

composition is 

t(F j+ 2k(~) + F’(x) Fk(x2)). 

The term x on the right-hand side accounts for the fact that the single-element poset is 

(+, @)-irreducible but cannot be obtained by substitution from a prime poset. q 

Lemma 4.4 concludes the recursive calculation of I(x), the generating function for 

(+ , @)-irreducible 2-dimensional posets. The class of 2-dimensional posets is the set of 

all posets obtained from the class of (+, @)-irreducible 2-dimensional posets by the 

operations of disjoint union and linear sum. Stanley [4] describes how to count 

the class of all posets obtainable from a given class of (+, @)-irreducible posets by the 

operations of linear sum and disjoint union. This result of Stanley allows us to obtain 

the following relations between the functions F(x), V(x), U(x) and 1(x). 

Proposition 4.5. (a) F(x) = V(x) + U(x) + Z(x). 
(b) V(x)=(F(x)- V(x)) F(x). 

(C) 1 +F(x)=exP(~k>,(~(xk)+~(xk))/k). 

The above proposition completes the recursive calculation of fn, the number of 

unlabeled 2-dimensional posets with n elements. The results of these calculations for 

n < 15 are included in the appendix. 
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Appendix 

Pj,kL the number of prime unlabeled a-dimensional posets having j fixed elements 

and k pairs of conjugate elements. 

P,: the number of prime unlabeled 2-dimensional posets with n elements. 
. 

I”. the number of (+ , @)-irreducible unlabeled 2-dimensional posets with n elements. 

4 the number of series unlabeled 2-dimensional posets with n elements. 

4. the number of parallel unlabeled 2-dimensional posets with n elements. 

fn: the total number of unlabeled 2-dimensional posets with n elements. 

Table 1 

pj. t 

k 

j 
0 1 2 3 4 5 6 I 

0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 

L 

21 
164 

1445 
14010 

149036 
1126345 

21639817 
291903582 

4216933310 
64970340763 

0 0 1 8 83 1003 13935 
0 2 9 90 1027 13967 217721 
0 3 28 351 5064 82790 
0 1 36 713 13976 287122 
0 0 20 825 24048 
0 0 4 543 26184 
0 0 0 189 
0 0 0 27 
0 0 0 
0 0 0 
0 0 
0 0 
0 
0 

Table 2 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 
13 
14 
15 

0 

0 

0 

4 
25 

174 
1481 

14136 
149490 

1728089 
21646709 

291932068 
4217054272 

64970872423 

1 0 0 1 

0 1 1 2 
0 3 2 5 
1 9 6 16 

12 32 19 63 
101 134 80 315 
876 688 392 1956 

8105 4294 2395 14794 
81678 32258 17590 131526 

895498 283894 152456 1331848 
10637749 2847100 1512186 14997035 

136202070 31803211 16762666 184161947 
1870476606 389315584 204045690 2463837890 

27434128174 5164688162 2965183977 35294000313 
428132304745 73671613533 38311550328 540115468606 
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