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Abstract. Let N(n) and N*(n) denote, respectively, the number of unlabeled and labeled N-free posets 
with n elements. It is proved that N(n) = 2”i”sn + Nn log”) and N*(n) = 22” loa” + tin log”). This is obtained 
by considering the class of N-free interval posets which can be easily counted. 
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1. Introduction 

Let (P, <) be a partially ordered set (poset), i.e. a nonempty set P together with a 
reflexive, antisymmetric, and transitive binary relation < on P. For short, (P, 6) 
will be denoted by its ground set P. The poset P is called N-free if its directed 
covering graph has no induced subgraph isomorphic to the digraph N shown in 
Figure 1. 

The class of N-free posets was first introduced by P. Grillet [4]. In [9], I. Rival 
introduced the term N-free. 

Another class related to N-free posets is the class of series-parallel posets, i.e. 
posets which can be obtained from the single-element poset by series and parallel 
composition. It is known [ 131 that P is series-parallel if and only if every induced 
subposet of P is N-free and, hence, the class of series-parallel posets is a subclass 
of the N-free posets class. This result was also independently proved by Kaerekes 
and Miihring [6]. The smallest poset which is N-free but not series-parallel is the 
poset with five elements illustrated in Figure 2. 

Let S(n) and N(n) denote, respectively, the number of unlabeled series-parallel 
and N-free posets with n elements. R. Stanley [ 1 l] used the technique of generating 
functions to calculate S(n) and gave the estimate S(n) N Cn -3/2a P-n for some 
constants C and a, which gives a lower bound for N(n). In [lo, p. 5251, R. Mijhring 
asked about the relative frequency of series-parallel posets within the class of N-free 
posets. On the other hand, Habib and Miihring [5] combined with Kleitman and 
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Fig. 1. 

Rothschild’s estimate [7] for the number of partial orders, to show that almost all 
posets are not N-free. 

The purpose of this paper is to prove that: N(n) = 2n’og n + ‘(’ log ‘). (All logarithms 
have the base 2.) Comparing this value with the result of Stanley [ 111, one 
concludes that almost all N-free posets are not series-parallel, which answers the 
question of Mohring. 

2. Asymptotic Estimate of N(n) 

Let P be a finite N-free poset. By a block of P we mean a maximal complete 
bipartite graph in the directed covering graph of P. More precisely, a block of P has 
the form (A, B), where A, B E P are such that A is the set of all upper covers (in 
P) of every y E B and B is the set of all lower covers of every x E A. By convention, 
(Min P, 8) and (8, Max P) are also blocks where Min P and Max P are the minimal 
and maximal elements of P. 

Let (A,, 41,. . . , (Ak, B,J be all the blocks of P. Note that for any two elements 
x, y E P, the sets of lower covers of x and y are either disjoint or identical. The 
same is true for the sets of upper covers. Thus, the Ai’s from a partition of P and 
so do the B, ‘s. We shall always assume that the blocks of P are ordered such that 
for any x E P if x E Ai and x E B, then i <j. We get the block representation of P 
by filling a 2 x k array with the Ai’s in the first row and the B,‘s in the second row 
in the above order. This is illustrated in Figure 3. Clearly, every N-free poset has 
a unique block representation apart from a possible permutation of the columns of 
the array. Then we can get an upper bound on N(n) by bounding the number of 
blocks with n elements. 

I I \ 0 \ 
Fig. 2. 
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PROPOSITION 1. N(n) < 2” log n + ‘cn log n). 
Proof. Let P be an N-free poset with n elements and let (A,, B,), . . . , (Ak, Bk) 

denote the blocks of P ordered as stated above. Define 

a, = lAil and bi = l&i, for i = 1, . . . , k. 

Denote the elements of P by uI, . . . , u,, where 

A, = {u,, . . ., u,,}, A2={U,,+l,...,U,,+~2}‘...’ 
and so on. 

Thus, the first row of the block representation of P is completely determined 
by the composition (i.e. partition into parts whose order counts) 
n=a,+a,+.- . + a, _ , of n into k - 1 positive parts. Let u,~,), . . . , u,(,) denote a 
permutation of the elements of P such that 

4 = &,(I), -“I% 3 1 4 = b,(b2+,), . . . 3 qb2+bs)), . . . 7 

and so on. Then the second row of the block representation is completely deter- 
mined by the composition n = b2 + * * . + bk and the permutation cr. Since the 
number of compositions of n is 2”-i, then we get 

N(n) < 2”-’ . 2”-1 . n! = ylogn+o(nlogn), 

This completes the proof of the proposition. 0 

In order to prove the lower bound on N(n), we exhibit a class of N-free posets 
of size 2”l”g”+ ‘@ “‘gn). As it turns out, this class will consist of posets which are 
simultaneously N-free and interval order. Recall that a poset is an interval order if 
it does not contain two parallel edges, i.e. an induced subposet of four elements a, 
b, c, d with a < b and c < d (the only comparabilities), see Figure 4. 

b I I d 

a c 
Fig. 4. 
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Now, let P be an N-free poset with n elements and k blocks 
(A,, m * * . , (Ak, B,J ordered as before. Define a k x k matrix 

M(P) = [m,], where rnU = IA, n Bj 1. 

The prescribed order of the blocks implies that rnV = 0 whenever i aj, that is M(P) 
has zeros on and below the main diagonal. Again, M(P) is unique up to a possible 
permutation 0 applied simultaneously to the rows and the columns. The following 
matrix is an illustration of M(P), where P is that of Figure 3. 

0 1 1 0 
0 0 2 1 

I 1 
0 0 0 1 
0 0 0 0 

LEMMA 2. Assume that mi,i+ 1 # 0 for i = 1,. . . , k - 1. Then M(P) is unique. 
Moreover, tf mii < 1 for all i, j, then P is rigid, i.e., has no nontrivial automorphism. 

Proof. Since in,,+ i # 0 we have Ai n Bi+ i # 8, and then the ith block must 
precede the (i + 1)st block in any block representation of P. This is true for all i, 
hence P has a unique block representation and, consequently, M(P) is unique. 

Now, assume further that all rnO < 1. Let x, be the unique element of A, n Bi+ , 
for i=l,..., k-l. Then x,<x~<** * < xk-, is a unique maximum chain of 
length k - 2 in P. Suppose a is an automorphism of P. Then a(xi) = Xi for each 
i E (1,. . . , k - I}. It remains to prove that a fixes every other element of P. Let 
x E P, say {x} = Ai n Bj for j > i + 1. Then x is the unique element of P which 
covers xi-, (or minimal for i = 1) and is covered by x, (or maximal for j = k). 
Therefore, a(x) = x. This shows that P is rigid, which completes the proof of 
Lemma 2. 0 

LEMMA 3. Let P and M(P) be as above. Then P is an interval order tf and only ij 
mi,i+,#Oforalli=l ,..., k-l. 

Proof. Assume that A, n Bi+ , = 8 for some i. Choose an edge a < b from the ith 
block (A,, Bi) and an edge c < d from the (i + 1)st block (Aj+ ,, B,, ,). These two 
edges are then parallel. 

Conversely, let P contain two parallel edges a < b and c < d. We can assume that 
these edges are covering edges, say the edge a < b belongs to (A,, Bi) and the edge 
c < d belongs to (A,, Bj) where i <j. Suppose there are elements 

xh EAhf’Btz+, for i < h <j - 1. 

Then a <xi <” * < x,- i < d which is a contradiction, and the proof of Lemma 3 
is complete. 0 

Let J(x) = C, a , j(n)xn be the generating function of all N-free interval orders in 
which no two distinct elements have the same lower covers and the same upper 
covers. 
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LEMMA 4. 

n+ 1 
j(n) = c 

(k - l)(k - 2)/2 
k=2 > n-k+1 * 

Proof. Let P be an N-free interval poset with n elements and k blocks, and 
assume that no two elements of P have simultaneously the same lower covers and 
the same upper covers. Then M(P) = [mii] is a unique 0- 1 matrix in which all the 
(i, i + 1) entries are 1’s. Thus, the value of mii, j < i + 1 is independent of P. The 
remaining entries of M(P) can be chosen in 

( 

(k - l)(k - 2)/2 
n-k+1 > 

ways. Summing over k, we get the required result. 0 

Let Z(X) = Xn a , i(n)x” be the generating function of all N-free interval posets. 
Replacing an element in a poset with an antichain produces a set of elements with 
the same lower covers and the same upper covers. The generating function of all 
antichains is x/( 1 - x). Therefore 

Z(x) = J & ( > . 
Now we complete the proof of our main results. 

THEOREM 5. N(n) = 2”l”g” + tin log “). 
Proof. Since N(n) >,j(n), then it is sufficient to estimate j(n). Assume n is large 

and put m = n/log n + 2. Now lemma 4 implies that 

Using Stirling’s formula, one easily deduces that if a B b 4 1, then 

N b log ;. 

Therefore 
m2 

log j(n) N (n - m) log - 
n-m 

Nn logn 

which completes the proof of the theorem. 0 

Let N*(n) denote the number of labeled N-free posets with n elements. 

THEOREM 6. N*(n) = 22” *Og ” + 4~ 1~ n). 
Proof. The posets counted by j(n) are rigid, hence there are n! ways to label the 

elements of such a poset. Therefore 
N*(n) > 22” log n + 4J log n). 

On the other hand 
N*(n) < n!N(n) = 22n10gn+4n10gn)a 
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Table I. 

n CN N CSP SP NI I 

1 1 1 1 1 1 1 
2 1 2 1 2 2 2 
3 3 5 3 5 5 5 
4 9 15 9 15 14 15 
5 31 49 30 48 43 53 
6 115 180 103 167 143 217 
7 474 715 375 602 510 1014 
8 2097 3081 1400 2256 1936 5335 
9 9967 14217 5380 8660 7775 31240 

10 50315 69905 21073 33958 32869 201608 
11 268442 363926 83950 135292 145665 1422074 
12 1505463 1996922 338878 546422 674338 10886503 

N: N-free posets; CN: connected N; SP: series-parallel pose@ CSP: connected SP; NI: N-free 
interval posets; I: interval posets. 

Appendix 

In this appendix, we present the number of unlabeled N-free, series-parallel posets 
with n elements n < 12. The calculation of the number of series-parallel posets is 
based on [ 111. The number of N-free posets was calculated through a computer 
program which generates all matrices M(P) representing N-free posets P taking into 
account that different matrices may represent the same poset. The number of 
matrices increased rapidly with n, so did the running time and the calculations had 
to be stopped at n = 12 (Table I). For comparison, we also include the number of 
unlabeled N-free interval posets and the number of unlabeled interval posets (based 
on [3]) for n < 12. 

Finally, let us remark that several of the numbers of partial order with n = 10 
elements given by Miihring in [8] are not correct; compare the numbers of N-free 
and interval orders above. See also [l] for the exact number of two-dimensional 
posets with 10 elements. 
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