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Abstract.

In this paper the authors enumerate the number of permutation
graphs (up to isonorphism). The counting process depends on the
exploitation of structural decompositions of various sorts of
permutations and permutation graphs and a relationship between
them, which leads to the properties of those graphs having twice
transitive orientations (prime permutation graphs).

According to the results of Polya,RiddellGeHl]ch. 24), the
exact number of specified graphs. g@),with n vertices Is, recu-
rsively, calculated. Also, the authors found the functional -
equation for the generating function y _ ,@x" in terms of the
generating function for prime permutation graphs.

The numbers of permutation graphs with n<20 are given.
These numbers show that the previously knovn number for n = 10
given In [B]is not correct.
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81 . Introduction.

Previously known studies about permutation graphs have been based on two
aspects of these graphs, namely their theoretical structure and the
design of algorithms for this class. In recent years the structure
of a graph can be represented by a tree. The tree representations
for permmutation graphs, [7].have contained the infinite class of
prime permutation graphs as basic building blocks. In B]Lorna k.
Stewart develope4 a decomposition theorem for prime permutation
graphs and designed a new permutation graph tree structure which
has only the paths on fewer than four points and their complements

as basic buirlding blocks.

Recently, i1n [2], the authors have enumerated 2-dimensional
posets together with many sorts of permutations. Here a 2-dimensi-
onal counting technique is extended to describe exactcounting, through
recursion, of permutation graphs (up to isanorphism). The
technique depends on the correspondence between the permutations
and the permutation graphs which is many-to-one, since two or more

permutations may have the same comparability graph.

In fact, the authors are merely counting five disjoint sub-

classes of permutations.which lead to the number of prime permut-

ation graphs, then they applied Polya®s and Riddell"s theorems.
41 . to calculate the number of unlabeled permutation graphs.

The appendix contains all computational results for some types

of permutation graphs and prime permutation graphs of n < 20 points.

§2. Definitions and Basic Concepts.

Henceforth, the term "graph™ will be used for unlabeled,

simple, undirected graph unless otherwise stated. Let G = (V.E) be

-4.24 -
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a graph and G is its complement . A graph can be oriented into a
directed graph by transforming each undirected edge (,y) € E
into a directed edge &,y) or (y,X).

A directed graph is transitive 1T the existence of the edges
&,y) and §,z) in E implies the existence of &,2) in E. If there
are three vertices x, y and z such that ,y) and ¢ ,z)are edges
but (,z) is not an edge, there is a transitvity violation involv-
ing X, y and z. A directed graph is transitive iff there are no

transitivity violations between any trio of vertices.

A graph i1s a comparability graph 1f 1t can be oriented Into a
transitive graph. Therefore, the comparability- graph,G@), of a
partially ordered set @oset),P, iIs the graph GxV.E),where V =P
and any two vertices x y are adjacent in G i ff they are comparable
iInP,@e. x<y ory< x).

A comparability-graph G is said tobe a uwiquely partially
orderable graph, or a U0, 1f 1t has exactly two transitive
orientations, one being the reverse of the other, (@], [5D-

A proper subfamily of UPOs i1s the family of UTOs, where a

canparability graph G is said to be a uniquely two-dimensional
orientable graph or a uTo, if both G and G are UPOs.

A graph G 1s a pernutation graph, [7], 1T there i1s a pair of
permutations P, ,P_, on the vertex set, such that there is an edge

between u and v In G 1TF u precedesv iIn Pand P,,or v precedes u
in P,and P2- Every permutation graph is a canparability graph; the

converse 1s not true. Also, A graph G isapermutation graph iff

G and G are comparability graphs, B]-

According to thisdefinition,one can conclude, [8], that:

- 4.25 -
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Permutation graphs are precisely the comparability graphs of two-
dimensional posets. By the dimension, d(P), of a poset P, we mean
the minimum nunber of linear extensions of P whose intersection is

the ordering of P, and the set of 2-dimensional posets consists of

al | posets having d(P) <2, [2].

This shows that permutation graphs and 2-dimensional posets
can be identified with a permutation on the ground set, R] . This
characterization [] can be obtained by renumbering the elements
of a 2dimensional poset in such a way that one of the two linear

extensions whose intersection is the ordering of P i1s just v,v,

... vV .The other linear extension v; v, ..v; then defines the

n

permutation m by letting n(v;) =v;, -Thus a graph G = (V,E) with
V=4,..-,v }is apermutation graph iff there is a permutation

m on V with
(v,v) eE iff i < jand n7'(v) <m'(v)).
where n‘l(v() denotes the position of

v; Inm. An example of a permutation

£
graph isgiven inFig.l, that ident-

v 7]
1 -1 06
v o/
2
v v
e? 3 Ys
ied with the permutation = {vvsv, v vsv,0,} o Ftet

on i1ts ground set {v,v,v3V,VsVcV;}-

As 1n the case of 2-dimensional posets [2], a .permutation
graph might correspond to more than one permutation. Therefore, the
correspondence between permutations and permutation graphs is many-
to- one. Howmever, this correspondence behave well when restricted
to the so called prime permutation graphs. Since thereare only a

finite number of permutation of each permutation graph.

For any graph G ={,E), asubset UcV 1i1ssaid to be a

-4.26 -
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partitive On G 1T every vertex in V-U is adjacent to all vertices
or to vertex In U. The graph G 1is said to be prime 1ff 1t has no
ntps @on-trivial partitive set). We know that, every prime compa-
rability graph i1s a UPO [8]and also the prime permutation graphs
together with the path of three vertices and 1i1ts complement are
precisely the UTOs [8]. Therefore, one can easily conclude that

BEvery prims permutation greph 1s a UTO.

Permutations corresponding to prime permutation graphs can be
easi ly characterized by knoving the form of a representation of a

partitive set of agraph G in 1ts corresponding permutation. Let

oces, and assume that X cn] is an interval of the form X = {i,
i+1, ..., I1+J}. We say that X is a consecutive set of ¢ If the set
@)= {o(i) , o(i+1),...,0cCi+j)}is an interval of |n].FromB],

if e S be the corresponding permutation to the permutation graph
n

G =(V,BE)with |V| =n, then s has a consecutive set if G has a ntps.

In other words G is aprime iff s has no proper consecutive set [2].

This result enables us (In the next section) to calculate the
prime permutation graphs. Nov, we introduce how to build up the
class of permutation graphs (permutations) from prime permutation
graphs (prime permutations) by using substitution composition

, series sum and parallel sum.

R Their
Let G’- (V’.E‘) and G‘- (Va,E‘) be two disjoint graphs.

Parallel SUm (dispint union) G, UG, IS defined by the ordered pair
(V, UV, E, UE,) ,and the series sum @m), G, + G218 obtained by

adding all edges between G: and G’ to G‘U Ga.
let G =(V,E)and g , (V" E®D be two disjoint graphs. The

graph Ci? is obtained from G by replacing the vertexv €V by the

- 4.27 -
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graph g through replacing every edge meets v iIn E by a new edge
meets y, Vy € V"_ This operation i1s called substitution composit-

ion. Clearly, in this case, V" will be a partitive set in GJ. A
graph G 1s called (u,H)-irredwcible 1T It 1s not the series

or parallel sumof two snaller graphs. Obviously, if Gis a
prime graph,v €V and g is any graph then ¢J is(U,+}-irreducible
graph.

It 1s well-known that the operations of substitution compos-

ition, series sum and parallel sum preserve the property of being

permutation graph if te initial graphs are permutation graphs,|[8].

The construction principle for the composite of permutation
graphs carriesover their corresponding permutations. Let permuta-

tions g,7 and w correspond to the graphs G,,G, and D respectively.

Then, the union sumG; U G, corresponds to the parallel composition

o +7, Whereas the series sum G; + G, corresponds to the series
compositionos & . And also 6]-" corresponds to the graph D\C:1 where

v ¢ D 1s the vertex corresponding toj € [n]. (he authors intro-
duced the definitions of these operations in case of permutations
in more details in [2])- For simplicity, henceforth the two graph
operations, disjoint sum and series sum, will also be denoted by
"+ and "@" respectively. Note that the parallel and series sums
for permutations are not commutative In the contrast to the case

for graphs. Fig.2 i1s a schematically example of the permutation

operations.
: 252 i
n+m n+m neém-14 "
T
o o
n+d nHip tmg- /1'
np— n ' : j/
0 (4]
1 i
i T
08T o7 o

Fig. 2,
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Thus a permutation § i1s called series or parallel permutation
iIT 1t has the form c® 7 or o+t for sane ¢ and T respectively.

otherwise § 1s(+,®)-irreducible Furthermore § 1s said to be
prime if it does not have the form ¢/ for some o,z and j.
In the remainder of the present section, we introduce the

various types of symmetries of permutations. These types together
with the above properties of prime permutation graphs lead to same
facts which simplify the counting problem of the exact number of

permutation graphs.

Let s G)denotes the set of all permutations which represent a
permutation graph G. Let PG(o) denote the unique graph represented

by a permutation o.

Permutations which represent the same graph are equivalent in
a sense. We nov iIntroduce a more restricted type of relationship
which partitions «G) iInto equivalence classes of cardinality less
than or equal to four. Let sbe a permutation on [n]. Then the
permutation obtained by flipping svertically (the dual permutat-

ion) is referred to as sV, the permutation obtained by flipping ¢
horizontal ly @he inverse permutation) is referred to as s and the

permutation obtained by flipping « both vertically and horizontally
is ¢""_We now define
I'(o) = {0,0%,06",0""}. For any permutation g,
all elements of I'(o) certainly represent PG(s). Further character-
1zations of the elements of I'(o)are introduced in the folloving
lenma, [8]-

Lemma 2.1 .
D" @) =N+ 1 —og(n+l-1) 1< i<n.

(2) oM =g1,

-4.29 -
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B)o"(H)=n+1—-c"t (n+l-i) 1< i < n. |

It 1s clear that for a permutation ¢. the elements of I'(g) are
not necessarily all distinct. Fig.3 illustrates examples of several
types of symmetries. According to the Tfolloving types, we can
divide the class of permutation into five subclasses.

Type (1) - a permutatiop « has all possible symmetries, that is
g =¢" =g" =¢g"" (o, InFig.3) and |I'(o)| =1.

Type (2) : a Permutation ¢ has only o=0¢"(c"=0¢"")but ¢ #o"
and ¢ # o'l @, inFig.3). %o, [I'(0)| =2, and ¢ is
called an involution.

Type (3) za permutation ¢ has only
c=0cY(c"" =" but ¢ # oh
ands # o ( g3 1IN Fig-3). S0, [T(e)| = 2, and o is

called a self dwl permutation.

\Y h
Type (4) :a permutation o hasonly ¢ = ¢"*(¢" = ¢¥) buto # o"
and o # d¢(o, In Fig.3).so, |[T'(o)| = 2.
Type (5) -a permutation ¢ has none of the symmetries,
therefore |I'(o)| = 4, (osin Fig.3).
g
01 03 03 o o
4 S

Fig.3.
In the Tfolloving theorem Lorna,[8], proved that two
different labellings which give rise to the same permutation imply
the existence of an automorphism in the graph.

Theorem 2.2.

Let ¢ and T be two permutations representing the graph G=V ,E)

and let f,vz,--.,v }and {u;,uy,.-.-,u }be the [labellings of V

- 4.30 -



1.S.S.R, Cairo University, Vol. 25, 1990

corresponding tos and t, respectively. Theno = = 1TF there is

an automorphism of G mapping{v,,v;, -- -,V jonto{u,,uy, - - -,u}.-O

Now we restrict our attention to prime permutation graphs and
their corresponding permutations. We exploit the following lemma,
[8], conceming the number of permutations that represent the same
UTos.

Lemma2.3.

Let G be a permutation graph and let ¢ € 6(G). Then G 1s a UTO

iIff the only permutations for G are I'(o) , 1.€. |a(G)|—=|T(0) a.

Nov, we can translate this information into the language of

generating functions.

83.Generating Functions For Types of Prime Permutations.

In the rest of the paper, standard generating function techn-
iques are employed to first count the number of prime permutation
graphs and then to count, for each prime permutation graph, the
number of & ®)-1rreducible permutation graphs. According

to series, parallel sums and Riddel " s theorem, the number of
permutation graphs is obtained. Our First job will be to
enumerate the symmetric classes of permutations. To do
so, we First recall the results that proved in RJfor obtaining

the generating functions for permutations and involutions.

The folloving are the generating functions for all, series,
parallel, & ®)-1rreducible and prime permutations respectively.

FOO =Zpsr f)x™, V(X)) =Zpsy v()x™, U(x) = 2yey u(m)x™,

1(X) =25 i(m)x™ and P(X) =%, P(n)x™.

It i1s clear that f(n)= n!and the needed relations between
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these generating functions are given below, [2].-
F&) = 2V(x) + | (X) G.1).
(Note that the generating function for parallel permutations 1is
equal to the generating function for series permutations, [2]).-
VOO=(F &) - VCOIF&K (3.2) .
) = P(FG))+ x (3.3).
These relations can be used to calculate v@}and 1 (n) recursively.

Then using @3)one can calculate P@).

The elements of permutation can be divided into sets depending
on whether they fall in a l1-cycle or 2-cycle when the permutation
is Flipped. To obtain the generating functions Tfor symmetric
classes of permutations, these sets must be determined and therefore,

the folloving terms must be defined.

Let 0 €S, be an itnvolution @ self dual) . Then an element
1 € In]Jis afixed element of ¢ iTo @) =1 @F n Is an odd number,
1 1s the middle point and g (@)=1) . A pair of distinct elements
i, J € [n] is a conjugate pair of symmetric points if o(i) = j and
c@G) =1 (@) +s@)=i+jJ=n+ 1.

The class of permutations can split into two parts, one
contains al l involutions (¢ =¢*) and the other contains the rest
of specified class @ #"). This partition is already enumerated

in R], thus we recall only the considered generating functions
and relations between them.

Let F, ¢ 2=Zj 420 F,G K
i y’z?*where f, G .K) is the number of

involutions d € Sj,,, having jJj Ffixed elements and k pairs of

conjugate elements. Then ¥, (J k) is the number of permutations

having the cycle type 172k . Hence

4.3 -
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G _+ 2K)!
Jr kv 2k

T (4 k)= (3.4) .

From [2] we have

Vily,z) = j,k=0 V1(i»k)yj22k»U1(}’:Z)
= Zjk=0 uy (j, k) ijZk,
L(y,z) = j,kaoi1(jrk))’jZZk&P1(y;Z)
= j,kzoP1(/»k)}’j22k,
where v;,G.k), u; Gk). i;G.k) and P, ¢.x) are the number of

series, parallel, @@)-irreducible and prime involutions of cycle
type U2 respectively. Obviously, we have

F lv.2) = V,(v.2) + U (y.2) + 1 (y,2) (3.5) .
Furthermore the following relations between these generating

functions are proved in [2].

V. 2D=(FL¢.2)-Vi¢.,2))F (v.2) (3.6) .
U, ¢.2) = (F(z9) —UE&)(I+ Fy (v .2) 3.7 .
L(y.2) = P(Fy (y.2) .(F( 2D) "5 (3.8) .

Equations @4)-@8)can be used to calculate recursively the
coefficients of Vlﬁ/,z), Ulgl,z), I, ¢,2)and P, ¢,2).-

Again,we can divide the class of permutation wr_t. the
flipping on vertically. A similar process will be used to obtain

the generating functions for selT dual permutations in whicho=0".

Let F(y,2) = S L(K)(1 + y)z?* where f,(k) is the number of self

dual permutationso € S,, 5" having the cycle type 2 where k=|n/2].
Hence

£,00 = 25 k! G 9.
Consider VZG/,Z), UZG/,Z), |26/,Z) and PZQ/,Z) be the generating
function for series, parallel, @ ,®) —d9rreducible and prime self

dual permutations of cycle type 2* respectively. It s easy to
see that these are related by equation @5). In what follovs the
authors proved some more relations between these generating

functions.

- 4.33 -
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Lemma 3.1
@) V,(y,2) = (F(z*) = V(z?)(1 + F,(y,2)).
(b) U, (y,2) = (F(z*) = U(z))(1 + F,(y,2)).

(©) U2(y,2) = V2 (¥, 2).

Proof.

Let 6 be a series self dual permutation. Then 6 can be written
uniquely In either the form @ t® 0 or the form c @ owhere ¢ iIs
non-series permutation and t is a self dual permutation because
of o =06v. The absence of T 1s accounted for by the tem 1

in the second bracket. This proves @)- By a similar way

we can prove (b).
Finally ¢€) follows from @) and ( b). o

So gquation @.5)can be rewritten for this type as.

F,(v.2z) = 2V, (y.2) + 1_(v.2) G-10).
Lemma 3.2.

I,(v.2) = P(F, (v.2),(F(z*)*"?.
Proof.

Let 0 € S_be aprime self dual permutations with cycle type
2%, where k = |n/2|. Consider any self dual permutation ¢ obtained
Tram o by substituting a self dual permutation for the middle point
1T n is odd and the same permutation for each pair of conjugate
elements . Therefore, the generating function for all self dual
permutations obtained by substitution frons is F, 2 FEK.
The lemma now follows. o
Equations @9) and @.10) and lemmas 3.1 and 3.2 can be used to
calculate recursively V, ¢.,2),1,¢.2and P, (y,z)

The class of permutations can be split again into two halves
according to the condition ¢”* = ¢¥ _From lenma 3.1,if o€ S _ and-
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h
s -o . we get

o(i) = nt1-o"(n+1-1) V i € ] (3.11) .
This rule partitions the elements of |h] into two parts. Elements
of the first part satisfy ¢(@)= ntl-i. The second part contains
all elements (, ke nJsatistyingo() = ntl-k@d o(k) =n+l-1).
Thuselements (, karealsocalled conjugate elements . Nowwe get

the generating function for these permutations.

Fortunately, i1t 1s good surprise, that the class of permut-
ations ¢ havings? = ¢ can be easily turned out to the class of
involutions by using the folloving transformation on the R.H.S. of
equation @.11).

o (i) =n+1-0 (i) =" @) .
Therefore, ¢’ (i) =i 1T c@) =n+l-1 otherwise if (K are conjugate
elements then ¢’'(k) =1 and ¢’ (i) =k. This means that ¢’is an
involution, for example see Fig.4. This transformation leads to the

followving fact.

1
+4-i

k % 4 :
+4~-1 O = n+i-o

L i ;
+4-k

i .

‘T; i
o i - o’
Fig. 4.
Proposition 33.

There exist a 1-1 correspondence between the class of self
Inverse permutations (@nvolutions) and the class of permutations o
having ¢” = o™, O

So, 1t i1s enough to consider the generating functions,

I, ¢.2and P, ¢,2) for all, series,
F (v.2), V. (v.2), U|(y,2),

parallel, & ®)-irreducible and prime permutations with g =g"
-4.35 -
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respectively. These generating functions functions are analogous
to the generating functions for involutions which are defined
previously. Howvever the only difference between the two groups of
generating functions i1s that the method of constructing series
( parallel) involutions under the transformation is identical to
the method of constructing parallel &eries) permutations o.with
" =¢¥. The role of ¢ .2) and U1 ¢.2) inequations @ 4H-G )
must be interchanged to suit this class. This also means that
V(y.z) = U/(y.2) and U (v,2) = V_(v.2).

Fron the trees illustrated iIn Fig.5 and Fig.6, it iIs clear

that, the generating functions for permutations of Type (@)must

be obtained to find the numbers of various types of permutations.

o €S,
o =o" e
o =0 o = o o = o a#&v
Type(d) :
Type (1) Type(2) /\
O‘h =y oy d'h > o.v
Type (9 Type (5)

Fig-5: A distrubution tree of permutton w. r=t fHpping
on horizontally and then on vertically.

- 4.36 -



I .SSR, Cairo University, Vol. 25, 1990

geS,

e

o = O’
h
o = d o = o o m 0
Type( 1) Type(3) b Al d /\
ah c' - a'
Type(4) Type(5)

Fig-6: A distrubution tree of permutations w.r.t.
flipping on vertically and then on horizontally.

The key to our enumeration depends on characterizing the
elements of a permutation of this type. Elements of permutation
ses, Of Type (@) must be partitioned into four types which are
Type () All elements 1 €[Nn] satisfy:

@) = in o(ntl-i) =n+l-i,
Type an All elements ke[n] satisfy:
oK) =n+tl-k A o(+1k) =k,
Type a1 All pairs of distinct elements ¢,kejn]satisty:
oK) =tn o()) =k and o(n+tlKk) =n+tl-tA a(n+l- 1) = ntlk,
where ¢,k,ntl-e and n+l-k are pair wise < distinct elements.
Type av)All pairs of distinct elements ¢ke n] satisfy:
s (@) = ntlkAsK)=n+l-¢ and s@+1-K) =t A @+1-0)=k,
where ¢,k ,ntl-¢ and n+l-k are Pairwise distinct elements.
Schematic diagrams of these types are shown in Fig.7. It is clear,

that the elements of type () and type (1) must appear in pairs

of conjugate elements @-cycle). Also the elements of type (111)

~437-
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and type (@V) must appear in pairs of conjugate elements which are
divided into two groups . We choose the conjugate pairs of fTirst
group and the pairs of second group are determined according to

this choice.

Type(l) Type(ll) Type ( 11')- Type (IV)
Fi.g.7.

Now the generating functions for this class can be determined.
Let F&,Y,ZW) = Zirsso f&FSOA+X)xy? 225w where

f €,y s,t) is the number of permutationss€Ss,, (k+tr+s+t)=|n/2],

having k, r,s and t pairs of conjugate elements of type d).-
type (1), type (@11) and type Q@V) respectively. Then f (k,r s,t)
is the number of permutations having the eyele type 12k27r+st+t,

Hence the coefficients of F&y,zw) can be determined by

fk.r.s.t). = (b (m;k) (m—];-{)_ SS-l'-t 5 £ ’ (312)

2" 2 >7T t/2!

where m =|n/2] and t = m-K+r+s).

Now we introduce further generating functions for this type.
V(X,y,z,w) =2k r,s5,t20 V(k,r,s,t) (1+X)x2ky2rZZSW2t,
U(X,Y,Z,W)=Zy 520 uck,r,s,t) (1+X)x2ky2r225W2t,
1(X,Y,Z,W)=2 1 se20 1(k,r,s,t) (1+X)x2ky2r225W2t,

P(X,Y,Z, W)= rse20  P(K,T,S, ) (1H)xZy> 25w,
where V(k,rsit), U(krst), Ik,rs,t) and P(k,r,sjt) are

respectively the number of series, parallel, @ ,®)-1rreducible and

-4.38 -
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prime permutations of cycle type 12"

@5),we have
F&,Yy,zWw)=VE&yzw)+ UKy,zw) + I(X,y,zw) @G-13).
Lemma 3.4.

V(xy,zm) € 190 FL.(X 2> - va €.Z2)(I+F K,y ,z,W)).

Proof.

Similarly to equation

Let 6 be a series permutation of Type@Q)(@.e.0=0"=60"=
H‘Uh).

Then 6 can be written uniquely in either the formo @ 6@0 or the

fomo®@. This eads to (5D 0)" =(c®5 D 0)" = (c ® 5&9) "
d.e.@dsv®)=("DS"DP") =(s*"®s5v"amsv"). Therefore, s 1is
any permutation having s = s*» = 6v = s¥* and ¢ (@ —¢v )any non-
series permutation in the class containing a permutation -, having

r = t* that can be enumerated by the term
F1(x?,z%2)-v,(x? 2?).
The absence of s i1s accounted for by the term 1 1in the third

bracket. The term x 1In the First bracket creates the odd terms of

the series V .,y zw) . O

Lemma3.5.

UKy, z)=(19)  (Fy F W) = U Gyu’)) (IHF &y, Zw)).
Proof. Similar to proof of lemma 3 4. O
Lemma 3.6.
The generating function, 1(X,y,zw), for &, ®)-
irreducible permutations of Type (@) is equal to
(HF(x y zw)) P{(F (% 20)°, (B2 w?)’, (F(z*)9, (F (w*) 9,

where p = /2 and q = 1/4.

Proof . be a prime
Let s €S, |n/2] =ktr+stt),and ¢ =o"=0"=o"

permutation having k, r, s and t pairs of conjugate elements of
type @), type (1), type (@11) and type (@V) respectively.
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Consider any permutation o (e =0v= 6=6"") obtained from by
substituting the same permutation t in the same elements of two
related pairs of type (I111) and type @V) - The pairs of conjugate

elements of type @) are replaced by the same permutation § from a
class having & =6"_ Also, the pairs of conjugate elements of

type (1) are replaced by any permutation @where@ ? =@ .
Therefore the generating function for al I permutations obtained by

substitution from o+ IS

2 2.k 2 B 4,872 4 tr2
CF, (x7. 20 (F (v ., W) (F(2) " C(F(W )" " . |f the number,n, of elements

Is odd then there exists a middle point. This point must replace
by a permutation from the class containing o. Thus the generating
function for all permutations obtained by substitution fran ¢ with
odd number is

(FCxy zm)) (Fi(x?,22) < (Fs(y?, w?)T (F ()2 (F(w*)/? . =

Equations @.12) and @.13) and lemmas 34,35 and 3.6 can be
used to calculate recursively V(X,y,zw), UK y.,zw), 1(X,y,z,w)

and P&,y,zw).

84 . Permutation Graphs.

Now a functional equation for the generating function for
prime permutation graphs, ©r UTOs except the graphswith n < 3),
in terms of the generating functions for corresponding types of
the prime permutations can be obtained as follows.

Theorem 4.1 .
Consider pPI(x) ==x,-,P9(n)x™ be the generating function for

prime permutation graphs. Then
PPog= P + BY(X0)+ PY(X),

where. @) pr? &)= P(xX,X X).
Ot &) = V2 37 (P& X)P &K, X, X X))
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(&) P2(x) = 1/4 (P(x) - L2,P (X.X) + 2P(X.X.X.%)).

Proof.

Let o be a prime permutation. The graph G corresponding to o
is then prime g2). Also,we knov that I'(¢) 1s the set of all
permutations corresponding to G. Sowe must divide the coefficients
of generating functions for permutations by |[I'(o0)|.- Obviously
there exist three cases:

@A P& Xx,x x) 1s the generating function for permutationss of
Type ., (I(a)D) = 1.
O Pk, x)-P& Xxx,x) iIs the generating function for permutations
o of Type @), i= 2,3,4, (I'(o)]) = 2.
(@) P&- I2,P,(X,X)+ P&,X,x X)is the generating function
for permutations o of Type 6), i.e. (I'(0)|) = 4.
This canpletes the proof of theorem 4.1. =

Lemma4.2

Let G be a prime permutation graph and let Q(G) denote its
automorphism group . Then |Q(G)| < 4.

Proof.

For any permutation o, all elements of T (o)
certainly represent PG(c) say G. According to theorem 2.1 if any
two or more elements of I'(o) = {o,0",¢" 6"} are equal this means
that there exists an autonorphism of G gives this equivalent.
Therefore, we have the following cases: @) if|l'(0)] = 4

then there is only the trivial automorphisn , id, 1.e.
|Q(G)] = 1. @i) if |[[(o)] =1 then there is four elements in Q G)
that are {id,a,f,a08} Where

a G) corresponding to ¢’".FG) corresponding te
Corresponding to g'* Gii) if

c’and (aop) (G)

—_ vh
_ v Or o=ov
o= oh Oro=o

then QG) has respectively {id,a}or {id,B }or
{id,axo0f}-This shows
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that Q (G) has at most four elements. O

Let G — (V.E) be a prime permutation graph .Assume that G has

a non-trivial automorphism group Q (G) .say Q (G)={id,t,,7>, T3 3
T3 -T,0T5 - A Vvertex v € V for which z; (v) -v «7; € Q(G) will

be called fixed vertex. A pair of distinct verticesv ,u €V for

which z;(v) =u and z; () =V, t; € Q(G) willbe called conjugate

vertices. Sometimes iIf Q(G) has four elements and(x4,x3).(x3,x4) €
T; A (X1Xa, X2X3) €T, then the composition of automorphisms z,, 7,

produces 4-cycle. i.e.(x1x2x3x4) € 7,°t>- In this case these

two pairs of conjugate vertices will be called corjugate tetrad
vertices. If G has the trivial automorphism group then, by conv-

ention, all vertices are considered to be fixed.
Let P9 (y,z) =2 =0 P/(.K)y’z?*where PY (j k) is the number

of prime unlabeled permutation graphs having j fixed vertices and
k pairs of conjugate vertices.

pomen P (ko) YIZ2KW nere

Consider ako P9 (y,zw) -

e

P(j,k,r) is the number of prime unlabeled permutation graphs having j

fixed vertices, k pairs of conjugate vertices and r conjugate

tetrad vertices. We can re-state theorem 4.1 as follows:

Theorem4.3

The generating function for total prime permutation graphs

is given by P9 (y,zw) + P9 (y,z), where P9(y,zw)= P(y,z,w,w) and

PI(Y 2 -U237 (P (y,2)-P (y,z,z2)+ T .

2P (Y,Y,Y,Y) - | 4

This formula is the best to enable anyone to obtain the
generating function [9(x) =X,..i9(n)x" f0r(+,@)-irreducible

permutation graphs in terms of the generating function. G(x) , for
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total permutation graphs.

Lemma 4.4--

19 (X) =X +If(X) +Iég (X),
where

I} (X) = 1/4 Zjkrz0 P G,k 7)[1 + GX[G™ (X) + G (X)GF+27(X?) +

I
GG (XD + 62 (X% )] .
and P(,k,r) are the coefficients of the generating function

P9 (y,zw) (theorem 43)andn = j + 2k + 4r.

I7(X) = 1/2 ¥ k20 P9 (, )[G7+* (X) + G/ (X)G* (x?)] .

and PY (j,k) are the coefficients of the generating function
P9 (y,z) (theorem43) and n= j+2Kk.

Proof.

In the simple case, suppose G be a prime permutation graph
with j fixed vertices and k pairs of conjugate vertices. Then the
automorphism group, Q(G), has the cycle index

Z (Q(G))=1/2(s]** +SIsK).
In the other case.G has j fixed vertices.k pairs of conjugate
vertices and r conjugate tetrad vertices . Then the automorphism
group, Q (G) . has the cycle index

i l+2r z
1/4(ST 4 S/ sk+2r 4 g2kg2" ™ 4 g2 n even
Z(Q (G))= / ( 1 1v2 1 2 2

. J n
1/4(ST + STHLsk+2r 4 g2e4162" 4 6.2y odd
In/2|=j +k+r. From Polya's enumeration theorem ([4],ch.3,p.35)
.the generating function for al | permutation graphs obtained fram G

by substitution canposition is Z(Q (G), s; «G(x%).The term "x"

in the R.H.S. determines the single vertex graph that is considered
(+.@)—i rreducible but cannot be obtained by substitution fram a
prime graph .
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Let us introduce same more generating functions . Let
G(X)= Zp»1 9(N)x™,C(X) =2Zp»1 c(n) x™, D(X) = Xy», d(n) x™, where
g (n), ¢c (n) ,and d (n) denote the number of all, series , and parallel
permutation graphs with n vertices . Some relations between these and 19 (X)
will be proved in the following proposition .
Proposition 4.5.
@ GX)=c(X)+D (x)+19 (X).
) C (x) =D x).
(©) 1+G(x) =exp X Lk (C(xk) +19(x¥)).

Proof.
a) is clear . To prove (b),we must take in our account that

the prime image , the graph which is obtained by reducing every maximal
non-trivial partitive setto a one vertex, in both cases is the complement
of the other . Since the prime Iimage of parallel permutation graphs
with n vertices is the independent set of n vertices and in case of
series permutation graphs .is the complete graph of ordern. (c)is the
direct application of Riddell's theorem (see[4]ch.4. -p .90)for determining the
generating function for total graphs by knowing the generating function

for connected graphs if the properties of graphs are hereditary. O

I'ne above proposition completes the recurslve calculation
of g () . The nunlber of pennutation graphswith n vertices forn S 20

are included in the appendix.

Appendix.

The algorithms (recurrence relations) developed in this paper were
programmed by the authors. The progralns were run ona PCIXT with 8
MHz 8088-1 processor and made use of double precision via 8087 math

COprocessor.

A list of notations of what numbers are available is given

below. Followed by tables of these nunbers . The number of prime
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permutation graphs divided into two parts. The first part, P ( .,k .r), Iis
the number of prime permutation graphs that correspond to the number of

permutations of Type (1) « The second part. P9 (J,k)- is the number of
prime permutation graphs that correspond to the half of total number of
permutations of types (2)-(4) plus the quarter of the number of permutations
of type (5)-

P (j k) :the number of prime unlabeled permutation graphs with j fixed
vertices, k pairs of conjugate vertices and r conjugate tetrad

vertices .

P9I (j,k): the number of prime unlabeled permutation graphs with j fixed
vertices and k pairs of conjugate vertices .

P9 (n) : the number of prime permutation graphs with n vertices.

ig (n) :the number of (+@)-irreducible permutation graphs with n

vertices .

c (n) :the number of series permutation graphswith n vertices.

g (n) :the number of total permutation graphs with n vertices.

The values of P (j k,r) (P9 (j x)) for n>20 where n = j+2k+4r.
(n=j+2k) are given in Table(l) Table (2). Also, Table (3) contains the
values of P9 (n), i9(n),c (n) and gn) forn <20.

Remark:

In table (1) , the numbers of prime permutation graphs with n
vertices are equal to the numbers of prime permutation graphs with
n+1 vertices.

_ - Table -1-
n = %

PT0,1,1) = 1 P(2,0,1) = 1
PIo s

P iﬁig,Z)— 2 P it20 1, 1) =24
s >

P (0,I,20= 9 Pii2,0;2). = 9
P2, 200 8 =2 Rid, 1 = P

n =12 :

P05 0,3 =220 By =13
B2 o=y P(4,0,2) = 13
P(4,2,1) = 4

== T

PG s = ) PG 3.2) =5
P(2,0,3) = 140 PRS2y =102
Pid,1.2) '=51 02 P(4,3;1) = 2
26,002 =5 B, 2.0 = 2

n =16 ¢

P (0,0,4)=306 P0,2,3) =352
B2, 1 .3) r=1400 P{2;3,2) =76
P(4,0,3) =352 R 2 20 =256
Bi(l6s 1, 290 =6 P(6,3,1) = 4

n =18 : '

P (0,1,4)=2699 B(0,3,3) =422
P(2,0,4) =2699 P(2,2,3) =3240
B2 42 =it B(4,1,3) =3240
Pi(id -3 == P60, 3) = 422
P(6,2;2) = 312 Eife=dl ) =l
BiBG 12 =) B8 3.0) = 2
n= 207"

P (0,0,5)=5828 P(0,2,4) =9657
P(0,4,3) =240 P(2,1,4) =26168
P(2,3,3) =4920 P(4,0,4) =9657
P(d,2,3) =11504 P(4,4,2) =184
P(6,1,3) =4920 P(6,3,2) =616
P(8,0,3) =240 B8, 2,2) =184
P(8!4f1} =
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Table-3-

n P9 (n) v () c () g ()

1 0 1 0 1
2 0 0 1 2
3 0 0 2 4
4 1 1 5 11
5 3 7 13 33
6 16 56 43 142
7 92 424 176 776
8 772 3807 946 5699
9 7122 37413 6655 50723
10 75100 409236 57668 524572
11 864722 4867950 584784 6037518
12 10828162 62620895 6645569 75912033
13 145976240 864411955 82781507 1029974969
14 2108602744 12743980444 1115117484 14974215412
15 32485614494 199839950926 16116330326 232072611578
16 531839245100 3321988198540 248522321145 3819032840830
17 9222268211926 58368315636178 4071974487560 66512264611298
18 168887197615978 1081152612514174 70646883155506 1222446378826186
19| 3257683489023028 | 21062015593620296 | 1294039677219392 | 23650094948059080
20 | 66027857086670520 | 430599259434792202 | 24959331421832611 | 480517922278457424
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