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Abstract. 

I n this  paper  we  present  five  algorithms  to  count  the 

elements of the c l ass of . So-called, prime N-free posets. Our 

method is based on the correspondence between super diagonal 

matrices and N-free posets. According to P lya's enumeration 

theorem [6] and Stanley's results [11], we obtain an efficient 

method to compute the number of N-free posets by using the results 

of our program. As a result of our algorithm, the previously known 
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§1. Introduction. 

 
In [5] M. Habib and R. H Mohring investigated the complexity of 

N-free posets with respect to some well-known combinatorial optimi- 

zation problems which are polynomials solvable on series-parallel 

posets . Among them are the jump number problem,the isomorphism problem 

and the scheduling problem ( minimiz ing the sum of weighted 

completion times on one machine) . 

This paper is devoted to the description of an algorithmic 

method to count the elements of the c l ass of N-free posets . N-free 

posets have recently gained much attention in connection with  the 

jump number [10, 12] since it can computed efficiently  for these 

posets, i.e ., polynomially solvable on this c l ass. This has led to 

some structural insights into this c l ass of posets . These propert- 

ies , which were studied in [5] and summarized here in §2, have led 

to the belief that also other, generally NP-hard problems on 

posets should be efficiently solvable on this c l ass. M. Habib and 

R. Mohring [5] have shown that both the isomorphism problem and 

the 1-machine scheduling problem are hard on this  c lass although 

they can be solved in polynomial time by means of  the 

decomposition tree for series-parallel posets. The main reason to· 

this behavior of N-free posets is the fact that any given poset can 

be embedded into an N-free poset, and thus the complexity of arbitrary 

posets can be modeled within N-free posets . 

We then introduce in §3 the two representations of N-free 

poset which are the block and the matrix representations. Apart 

from a possible permutation applied simultaneously to the rows and 

the columns, there exists a 1-1 correspondence between the super 
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diagonal matrices of 0 and 1 entri es and  unlabeled  prime N-free 

posets . This correspondence leads to construct an efficient 

program. This program which is described in §4 consists  of  five 

algorithms, that are used for counting the number of non-isomorphic 

unlabeled prime N-free posets (prime N-free posets for short) of n 

elements. By using P lya's enumeration theorem [6] and Stanley's 

results [11], one can easily compute the numbers of N-free posets. 

The appendix contains these numbers for n 12, and the cycle index 

polynomials of automorphism groups of prime N-free posets. 

 
 

§2 .  Fundamental Definitions and Basic Properties. 
 

If a partially ordered set ( poset) is denoted by P, then its 

underlying set will usually also be denoted by P, and its order 

relation by   or   . By <· we denote the associated covering 

relation, i.e ., a <· b if a < b and a   c   b implies that a =c or 

c = b . If a and b are incomparable (i.e., neither a   b nor b a) , 

we write a ‖  . 

Let Q  be a poset. let            Q and let           

be posets such that Q ,             are mutually disjoint. Then by
 

 
we denote the poset resulting from substituting the elements    of 

\. 

Q  by the associated poset    (1 i h) . More formally: 
 

a     b         i with a , b       and a    b, 
 

or     i  j with a      , b       and         . 
\.     

The substitution is proper if 1 < |  |< | | for some i. A poset is 

decomposable if it can be obtained by proper substitution. Other- 

Wise it is said to be indecomposable or prime. This substitution 



Q 

< 

A > 

z · 
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operation and the associated decomposition are well investigated in 

[4,9]. We recall the following f acts and theorems, which will be 

used throughout the paper. 

Each decomposable poset P is obtained by a sequence: 
 

p =  Q 
1 1 
, 

, P =  P 2 , 
2 1 a 

2 

 

 
Q 

. . . , P =  P m 
m-1 a 

m 

of elementary substitutions in which each Q .   is prime. The Q. is 
                                                                                                                                                           j j 

unique (up to isomorphism and rearrangement) , and are called the 

factors of P . 

subset B of P is called autonomous if a < b ( a b ) for 
o o 

some b   B and a   P\B implies that a b ( a >  b) for al l b   B. 
0 

 

A poset is a decomposable iff it has a non-trivial autonomous set 

B (1 < | | < | | ) . Then P =   
   

where P/B denotes the subposet of 
 
 

P  induced by B ,   and where Q is obtained by rep l acing B  by just one 

vertex a. I f    = {B ,B , ...,B } is a partition of P into autonomous 
1   m 

 

sets. Then we denote by P/   the poset obtained from P by rep l acing 

the set B  by just one representative vertex         P/   is called 
i   

  

the quotient of P modulo  . 

Decomposition Theorem. For each decomposable poset P, one of the 

following three cases applies. 

(1) P =           

          , where Q is an antichain. Then P is said to be 

obtained by parallel composition of            .

 

(2) P =            

          

 , where Q is a chain , ( i.e., linear order).  

 

 ( 3) p =         where Q is a prime poset. Then P is said to 

be of the prime type (the irreducible poset w.r.t. parallel and 

series compositions) and Q is called the associated prime quotient 

poset. 
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The c l ass of N-free posets was introduced by Grillet in [3]. 

 
He defined them as the c l ass of posets that satisfy CAC property 

  
(Chain-Antichain-Complete, i.e., each maximal chain meets  each 

maximal  antichain) . Grillet also shewed that  a poset has CAC 

property if and only if it does not contain a subposet on four 

elements a, b, c , d with a < b, c <· b. c   < d and a‖ , a‖ , b‖ . 

Leclerc and Monjardet improved in [7] this characterization by 

proving that a poset P has the CAC property if f it does not contain 

as a subposet, the poset on four elements a, b, c, d, with a <· b 

and c < · b, c < · d, and a‖ , a‖ , b‖ , (Fig.1) . This poset looks 

li  ke the letter 'N'. Rival in [11] 

called them N-free posets (A poset P 

has the CAC property iff P has no 'N' 

in its diagram as an induced subgraph) 
Fig . 1 

Unfortunately, being an N-free poset is  not  a  hereditary 

property of posets (To obtain such an example just add a vertex on 

the covering edge cb in the poset of  Fig.1).  Even worse (and 

awkward with respect to CAC property), there are N-free posets such 

that the deletion of any maximal chain violates the property of 

being N-free. An example is given in Fig.2. However, if  all sub- 

posets of an N-free poset are N-free. then it is  necessarily 

series-paralle1 . · 

 

 

Fig .2 An N-free poset w hic h is not hereditary 

under the removal of maxi mal chains.
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     There exist many different characterizations of N-free posets , 

among those 1et us recal   l  the most important ones. 

Theorem. For a  poset P, the following statements are equivalent.
 

( i ) P has the CAC property; 

(ii) P is N-free; 

(iii) For al l x, y   P, ImdPred( x)    ImdPred( y) =   or 

ImdPred(x) =  ImdPred(y), where I mdPred ( x) denotes the set of 

lower covers of x in P. 

 
 
§3. Two Representations of N-Free Posets. 

 
I n this section, we will present some selected representation s 

of N-free posets that are the block and the matrix representations. 

Property (iii) of the above theorem states that the set of immediate 

predecessors (lower covers) of vertices form a partition of P .  This 

is a necessary and sufficient condition for a dag (directed acyclic 

graph) to be a line  graph of N-free poset. According to this 

property we describe the block representation of N-free poset as    

fo11ows [2]. 

Let P be a finite N-free poset. A bLock  of P means a maximal 

complete bipartite graph in the directed covering graph of P. More 

precisely a bl ock of P has the form ( A.B) where A, B   P are such 

that A is the set of al l upper covers (in P) of every y   B and B 

is the set of al l l ower covers of every x   A. By convention, 

( Mi n P, ) and (  ,Max P) are also blocks where Min P and Max P are 

respectively the minimal and maximal elements of P. 

Let ( A ,B ) ,...,   ( A , B ) be al l  the blocks of P. Note that for 
1 1 k k 

 

any two elements x, y   P property (iii) of the above theorem must 

 
be true. Thus the   's form a partition of P and so do the   's. 
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we shall  always assume that the  blocks of P are ordered such 

that for any  x     P   if  x      and x       then i <   j .  We get the bl ock 
  

representation of P  by filling   a 2   k array with the    s in the 

 

first row and the    ' s   in  the second  row i n the above order. This 
 
 

 

is illustrated in fig . 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
 

 

P 

 
 
 

 
 
   

 
1,2,3 

 
4,5 

 
6 

 
7,8 

 
9.10 

 
11 

 
12 

 
  

 
   

 
  

 
2 

 
1.4 

 
5 

 
8 

 
7,9 

 
3,10 

 
6,11,12 

 
 

Fi.g .3 The  poest  P  and   its  b l o c k   representation . 
 

Clearly every N-free poset has a unique block representation 

apart from a possible permutation of the columns in the array. 

IIt is very difficult to use the block representation of an 

arbitrary N-free poset on a computer because of the use of the SET 

facility, which n eeds more running time. Therefore, we chose to 

deal with the dual representation, that is, with the matrix  

representation of P ,  [ 2 ]  • 

Let P be an N-free poset with n elements and k blocks ( A  , B ) , 
1 1 

 

…,(      ) ordered as before. Define a k      k matrix M( P)= [        

 
 

where 
   = 

. 
|     |.  The prescribed order of the blocks implies 

that     = 0 whenever i  j , that is, M[P] is a super diagonal 

matrix. Again M (P) is unique up to a possible permutation   applied 
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simultaneously to the rows and the columns. The following matrix 

is an illustration of M ( P), where P   is that of Fig.3 . 

 

0 1 1 0 0 0 1 0 
0 0 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 

0 0 0 0 1 1 0 0 
0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 

Fig•4  The matrix representation of the 

poset that given in Fig • 3. 

This correspondence relation between the matrices and N-free 

posets leads to the construction of the described below algorithms 

for counting N-free posets. 

 
 
§4. Counting Prime N-Free Posets. 

Here we develop a program to count special type of N-free 

posets of n elements. This program is constructed to get the list 

of al l compositions of n in inverse lexicographic (lex) order. For 

each composition with k parts, 1 <  k <  n, the _ program creates al l 

associative matrices in inverse colexicographic ( colex)  order, 

that satisfy the characterization of matrix representation . For 

programming simplicity ·the authors use lower triangle matrices 

which are transpose of super diagonal matrices after excluding the 

first column and the last row. The first matrix of the  list is 

constructed by putting the k parts at the main diagonal of a k   k 

matrix. The next matrix in the inverse colex order is obtained by 

replacing pivot row, m, with the next composition of the part number 

m. Then modify the above m-1 rows by putting the values of m-1 parts 

on the main diagonal and leave the other k-m rows without change. 
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Then the algorithm tests whether this  matrix represents a  poset 

having one component or not . If not the matrix will be excluded and 

the next  one will be created. 

The  next ste p i s to check the uniqueness of the matrix under 

consideration (The matrix is a unique iff its main diagonal has no 

zeros). I n   case the matrix is not unique the test of isomorphism 

must be applied . The suggested algorithm is used to get al l possible 

permutations that can be appli ed simultaneously on the rows and the 

columns of the matrix . In the same time the algorithm  counts the 

number of permutation that lead to accepted matrices (TP)  and the 

number of permutations that lead to the same matrix ( EP) . The   first 

set of permutation s is the elements of a permutation group whose 

cardinality is TP and the second set is the elements of the above 

group under which the object left invariant. 

According to Burnside's lemma [6], "The number of equivalent  

classes i s equal to the average takes over the group, of t he 

number   of    elements  t ha t   are  l eft   invariant   by   a  group  element      " 

we obtain the number of distinct posets = EP/TP. 

 
The result of this program is the number of connected N-free 

 

posets. Applying Stanley's results , [ 11] , we easily computed the 
 

total  number of N-free posets . 

 
Unfortunately, the running time of this version increases very 

rapidly and i t can't be executed for n 13, (the running  time

 at n = 12 on PC/XT with 8 MHZ 8088-1 processor takes more

 than 200 hours). So, the need of a modification to reduce 

this running was essential. Since the test of isomorphism needs 

running time O ( the ·factorial of the order of the matrix).  

Then, the algorithm was 
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modified to deal only with matrices that represent prime N-free 

posets. This modification leads to the following improvements :- 

(1) The number of compositions of n that used is reduced, (i.e., 

it is much more less than      ) .  All parts of a  composition is 

not exceed its position, n = ∑   
 
    ,  where               

and       

 

(2) All matrices have 0 and 1 entries only. Since if there exists 

      2  this means that this poset has an autonomous set of at 
 

least 2-elements. 

(3) The number of matrices that will be tested for isomorphism is 

much more less than before. 

 
The result of these improvements reduced the running time to 

18 hours only and we hope to get the number of prime N-free posets 

with n > 12. 

Note that : henceforth we will use the following declared type. 

 

Type  
matrix 

vector  

vector-set 

 
:array [ l ..integer_no, l..integer_no] of integer 

:array [ l ..integer_no] of integer 

:array [ l ..integer_no] of set of 1..integer-no 

 

A. Assistant Algorithms. 
 

Function Sum  ( RowNo , CoLNo : integer , A : 

 

{ ∑         
     
     } 

matrix): integer 

begin 

Add   0 

for i  1 to CoLNo do  
Add 

 
 Add + A [ RowNo,i ] 

Sum 

end. 
 Add 

 

Function Pivot _Row( n : integer, Part : vector) :integer 

{Search for the first row, i , at which Part[i]   i} 

begin 

    i   1 
repeat 

i    i +  1 

until(Part[ i]  i )or (i = n) 
Pivot -Row  i 

end. 
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procedure Adjacent_sets_of_Elements ( A : matrix, 

                                                                                                  var   Adj: vector_set) 

begin 

ElementNo   1 

for i   2 t o n do 

for j   1 to  i do 
if  A [ i , j ]  0 

then 

ElementNo   Element + l; 

f or  i    2 to n do 
f or  j   1 t o  i do 

if B[i,j]  0 
then begin 

f or  k    i + 1 t o  n do 

if B[k,i +l ]   0 
then begin 

 

 
 
 
 
 
 

B[i ,j]   ElementNo 

 
 
 
 
 
 

end 

X[B[i,j]   X[B[ i,j]]   {B[k,i+l]} 
Y[B[K,I +l]   Y[B[k,i+l]]  {B[i,j] } 

{ X : array of upper adjacent sets, 

Y  : array of lower adjacent sets} . 

end 

f or  i  1 to n-2  do 

for j   i +1 to n-1 do 

if j    X[i ] 

then begin 

for  k    j+l to  n do 

if k   X [ j ] 
then 

X[i]   X[i ]   {k}; Y [k]   Y [ k]   {i} 
end 

f or  i   1  to n do 

Adj [i]   X[i]  Y[i] 
{ Adj :array of total adjacent sets } 

end. 

 
Procedure CycLe_Type_Of_Mapping (  : vector, A : matrix, 

   var Cyc le_type : vector) 

{Get the cycle type of automorphism mapping 

which is(  j ,j ,...,j ) s.t. P = ∑     
 
   } 

1 2 p  \. 

begin 

for i   1 to n do 

f or  j   1 to i do 

if B[i,j]     

then begin 

L [B[i,j],l]   i; 

L[B[i.j],3]   B[i.j] 
end 

 
 
 
 
 
L [ B[i ,j],2]    j 

k    0 
repeat 

k     k + l 
if L [k , 3]   0 
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then begin 

i    [ L[k,l]  +l] – 1; j    

if ( L [ k ,1] =  i ) and ( L [ k ,2] = j ) 

then begin 

 
[L[k,2] 

Cycle_type[1]   

(Cycle_type [i]  is 

L[k,3]          

end 

else begin 

Cycle_type [1] + 1 

the cycle of length i ) 

0 

Ln   1 {Ln 

first_Element 

Closed_Cycle 

repeat 

r   k-1 

repeat 

is the length of cycle} 

  L [k,3] 

  false 

r   r+l 

until (i =  L[r,1] ) and (j =   L [r,2]) 

Next_Element   L [r,3]; L[r,3]  0 
if first_Element = Next_Element 

then begin 

Closed_Cycle   

L[k,3]   

Cycle_type[Lnl   

end 

else begin 

true 
0 

Cycle_type[ Ln] +l 

Ln   

i   

                                                                                        j     

Ln + 1 

  [L [r,l]+l] -1 
  [L[r,2] 

 
 
 

end 

until k = P 
end. 

 
until 

end 

    end 

Closed_Cycle 

 
B. Basic Algorithms. 

Algorithm (1) . 

Procedure Get_first_Comosition (P : integer , var n 

                                            var Part 

 

 
 
 

:integer, 

:vector) 
 
 
 
 

begin 

{Get the first composition of P in the inverse l ex 

order list that satisfy the following condition: 

  = i for 1  i  n-1,      1 and 2         n-1} 

Part [ l]   l ; n    l ; Temparory   P-1 

repeat 

n   n + l; Part [ nl   n 

Temparory   Temparory - n 
until Temarory < n+l 
if Temparory = 0 
then 

Part[n]   Part[n] - 2; n   n + l; Part[n]   2 



 

. ' 
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else begin 

if Temparorv = 1 
then 

Part [n-1]   Par t [ n-1]  -1; 
else 

 
 
 

Part[n]   2 

 

 
end. 

 
end 

n   n +1; Part [n]   Temparory 

 

Proced ure Get _Next _Composition  ( P : integer , var n :integer, 

var  Part : vector) 

{Get the next composition of P in 
order t:hat  satisfy the following  

1          i  for 1   i   n-1,       
  

the inverse lex 

condition : 
 1 and 2     n-1}

begin 
i   0 
repeat 

i   i + l 

until Part [ i ]  1 
X   Par t [ i] ; Part[i ]   1 

if i = n 
then begin 

Part[n]  2 ; 

Part [ n ] 2; 

end 

else begin 

n    n+ l 
X    X-2 

if Part[i +l ] +  ·l >   i +l 
                   then begin 

·   j   i ; 

                                         repeat 
  j   j + l 

 
 
Done   false 

                                               if Part [j ] +1 > j 

then 

x   x +  l ; Part [j ]  1 

else 

Part[j]  Part[j]+l; 
until Done 

if' j > n 

then begin 

Done  True 

 
 

 
and 

 
 

end 

Part [j]   

X   

2 ; 

X-1; n   n+l 

 
end 

X   X-1 

if x .    2 

else Part[i+l]    Part[i+l] +l 

then begin 

j   1 
repeat 

j   j   + l ; 

if  x  <  j 

then 

 

 
 

X   X + Part[j] 



 

. 
.... . 
' 
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             Part [j]   j ;                                  X   

else 

until x= 0 

end 

Part [j ]                                               

else Part[2]   1 
if Part [n-1 ] - 1 
then begin 

i   n-1 

repeat 
i   i-1 

until (Part[i] 1) or (  i  = 0 ) 
                  if i    

 then begin 

Part[i ]   

Part[n-1]   

end 

Part[i] - 1 

Part[n-1] + 1 

 
end 

else Get_Next _Composition 

if Part[n] =n 

then Get_Next _Composition 

end•. 
 

Algorithm(2). 

Procedure Create_f irst_Matrix (n: integer, Part 

var A 

 
 
:vector, 

:matrix) 

begin 

for i   

for j 

 

1 to  n do 
1 to Part [i ]  do 

A [ i,i+l-j]   1 

for i   

for j   

end. 

1 to n do 
i to n do 
A[n+l, i]   A [  n+l,i] + A [ j ,i] 

 
Procedure Cr         e       a        te_Next _Matrix (n , m : integer, Part 

var A 
:vector, 

:matrix) 

{Create next matrix that represents N-free poset. First, we 

change the pivot row , m . Then modify the upper m-1 rows and 

leave the other n-m rows without change}. 
 

begin 

i        1 
repeat 

i    i +l 

until A [m, i]   0 
A[m, i ]    0; X   A[m, 1] + 1 ; 

if x  >  i-2 
then begin 

repeat 

j   i-1 

repeat 

 
 

A [m,  1]   0 
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                                                             j   j+l 

until  A [m ,j]  0 

A[m ,j)   0 ; X   X+l 
 

     until X    j-1 
     i   
   end 

        for j  1 to X do 

             A[m,i-j]  1 
       for i  2 to m-1 do 
 
 
 
 

begin if Part [i] i 

 then begin 

for j   1 to Part[i ] do 
A[i,i +l-j]   1 

 
 
 

end 

 
 

end 

for j   i - Part[i] downto 1 
A [ i.j ] 

do 

  0 

for i   1 to m do 
begin 

A[n+l,i ]   0 
for j   i to n do 

A[n+l,i ]  A[n+l,i] +  A [j,i] 
 
end. 

end 

 

Algorithm ( 3) 

Procedure Test_Connectedness (n : integer, A : matrix, 

var Poset_Connected : boolean) 
{Search for this matrix that represents a poset 

with one component or more . In the first case we 

return with Poset_Connected is true} 

Procedure Get_Path (D : integer) 

var 
 

 
begin 

i , j : integer 

for i  2 to  D do 

if A  [  D , i]    0 
then begin 

B  B U  {I         i   -1} 

if i 2 then Get_Path(i-1) 
end 

 
begin 

end. 

L  0 { L : the number of components} 
for k  2 to  n do 
begin 

i f A[n,k]   0 

then begin 

B    

if k  

      if    L = 

{k-1} {set of adjacent e l ements of k} 

 2 then Get_Path ( k-1) 

0 
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then begin 

L  l; C [l]   B 

{C is an array of sets that represent 

disjoint componenets of a  poset} 
 

else 

end 

begin 

j   0 
repeat 

j   

until (     B  
if j =L+l 

 
 
 
 
j + 1 

  C[j]  ) or (j  L+l) 

then L   L+l ; 

else begin 
q    j ; 

repeat 

C[L]   B 

C[q ] C[q)   B 

j   j + 1 

until ( B  C[j]   ) or(j L+l) 
if j L+l 
then begin 

v 
C[q]   

  j - 1 

C[q]   C[j ] 
for i   

if (B   
then 

j+1 to L do 

C[i])   

C[q ]    C [q]   C[i ] 
else begin 

V   V + l 

C[V ]   C[i] 

end 

 
 

end 

if L = 1 
then Poset_Connected   

 
 
 

 
true 

L   V 

end 

 
else 

end. 

{A matrix represents 

Poset_Connected   

{A matrix represents 

a connected prime N-free poset} . 

false 

a disconnected prime N-free poset} . 

Algorithm ( 4) 

Procedure Check _Prime (n: integer, A: matrix, 

                            var Poset_Prime : boolean) 

 
{Decide whether this matrix represents prime poset or not. 

I n the first case we return with Poset_Prime is true}. 

begin 

Adjacent_Sets_Of_E Lements( A, Adj ) 

Poset_Prime   false 

for i   1 to n do 
if Adj [i] = 0 then return 

for L   1 to n-1 do 

for k   L+l to n  do 
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                     begin 

                         A1 {L} ; A2   {L..K} 

                        {A1,A2 : two sets are used for testing if their exist an 
 

 
repeat 

   autonomous set} 

Untested _Elements  A1/A2; 

i   L-1 

while  A1   {1..i}    do 

begin 

A1    A2 

i    either  i+1  if  (i+1)     A l or min(A1) > i+1 

while Untested_Elements    do 

 begin 

j     either i+l  if (i+1 )    Untested_Elements 
or min(Untested_Elements) > i+1 

R     (Ad j[i]/Ad j[ j]    (Adj[j]/Adj[i]) 

if  R   ({1..k}/{L,k}) =    

    then  go  to  100 

A2    A2   R 

if  A2  = {1..n} 

then go to 100 

Untested_Elements   Untested_Elements/{j} 

end 

end 

until A1  = A2 

return 

100:end 

Poset_Prime    tr ue 

end. 
 

Algorithm (5) 

Procedure Test _Isomorphism ( n ,  Pos  : integer, A   : matrix, 

var  Equ, Total  :integer) 

{Apply all possible permutations. that create by the Johnson 

Trotte algorithm, simultaneously on  the  rows  and  the  columns  of 

A  to get  the  number  of matrices  which  are  isomorphic   with  A} 

begin 

f or i   1 to n+1  do 

   [i]   i;  [i]     i ; d[i]    -1 

A  {Pos+1...n}; Last._Perm      false 

Total     1; .  Equ    1 

{Equ is the number of' automorphic  posets 

and Total is the  number  of' isomorphic  posets} 

Cycle _ type _of Mapping (  , A , C) 

while not Last_Perm do  

    begin 

if  A        

then begin 

 
m  max{i, i   A};       j        

 Move   false 

if (A[m-1, [j+d[m]]=0) and  (m  >    [j+d[m]]) 

then begin 

 [j]     [ j+d[m]];          [j+d[m]] m 
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    [m]   j + d [m];     [  [ j ]]  j 

 
end 

Move  true 

else begin 

if m <   [j+d [ m]] 

then 

d[m]   - l; A  A/{m} 

else if ( d[m]=-1) and ( Move) 
then begin 

A   A   { m+l ...n} 
Total   Total . + 1 
for i   1 to n do 

for j   1 to i do 
if A[i ,j] A[ [i+l]-1, [j]] 
then go to 200 

Equ.   Equ + 1 
Cycle_type_Of_Mapping  (  ,A,C) 

end 

 
 

200: end 

end. 

end 

else Last_Perm   true 

 

 
Main Program. 

step 0 
 

 
 
 
 
 
 

step 1 

 
 
 
 

step 2 

Find P and MaxNo 

{P : number of points 
MaxNo: maximum number of parts of composition ofP} 

Set     0 

{   : number of prime N-free posets of P points}. 

 
Get_F irst_Composition ( P, N, Part) 

{ N: number of parts of ·composition of P. 
Part : the array of n elements whose elements 

are n parts of composition of P} 

 
if N = MaxNo then go  to step 16 

 

step 3 Create_First_Hatrix (N, 

{ A :an n+l   
Part, A)  
n matrix that 

 
represents 

 
 

step 4 

 a labeled 

  
if A[ l,l]   A[N+1,1]  

     then Check_Pr.ime (P , 

else go  to step 6 

N-free poset} . 
 
 
N. A, Poset_Prime) 

 

step 5 if Poset Prime then         + 1 
-   

 

step 6 M    

{M : 

Pivot_Row (N, Part) 

the pivot row at which Part[M] M}. 
 

. step 7 if (( M=N) and (A[N, 1]  0)) or((A[N+l,M] l)and (A[M,M]  l) 
then Create_Next _Matrix (N, M, Part, A) , go to step 9 
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step 8 Set M  M-1 

repeat 

M    M + l 

while Sum( M, Part[M], A) =  Part[M] do M  M +  1 
until ( A [ N+1,M] 1)  or ( A [M,M] =0)   or 

((Sum ( M, Part[M] -1,A) Part[M] -1) and Part[M] 1)) 
Create_Next_Matrix (N, M, Part, A) 

step 9 if A[l,1] = A[N+l,1] , 
{this poset has a unique minimal element} 

then M  2 go to step 14 
 

step 10 if A{N ,1] =  0. 
{this poset has no isol ated point} 

then Test_Connectedness( N . A. Post_Connected). 
else M  N , go to step 14 

step 11  if Poset_Connected 

then Check_Pr ime( N , A, Poset Prime) 
else M   Pivot_Row ( N, Part), go to s t ep 1 4 

step 12 if not ( Poset_Prime) 

then M    Pivot_Row (N, Part), go to s t ep 14 
 

step 13 i  1 

repeat i  i + 1 
if i = N 

then P   P + 1 

else begin 

until (A[i,i ] =  0)  or ( i = N) 

 
 
 
 

end 

Test_I somrphism (N, i , A, Equ ,  Total) 
P  

     P + 
Equ

 
P P Total 

 

step 14 if Sum(N, Part[Ml -1, A )  Part[Nl - 1 

then go to step 7 

 
step 15 Get_Next _Composition (P, N, Part), 

go to step 2 

 
step 16 stop. 

 

 
Finally, the number of N-free posets, f , can be obtained as 

n 

follows: 

(1) Executing the program one can count the number of prime 

N-free posets,    and determine the cycle index polynomial of 

automorphism groups ( Tables I and II in the appendix). 

(2) Ap plying P lya's enumeration theorem [ 6 ]  with knowing P 
n 



 

n 

...', 
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and cycle index polynomials compute the numbers of N-free posets, 

 
i ,that produced by substitution composition. 
n 

(3) According to Stanley's results [11] , the numbers of 

Connected,     v , and total N-free posets can be easily determined 
n 

by using the computed numbers i . 
n 

 

Note that f or details see [1], the authors computed the 

numbers of 2-dimensional posets via counting the numbers of prime 

2-dimensional posets by using the same method. 

At the end of the paper, we must record that MOhring's results 

given in [8] are incorrect for n = 10 not only in the case of 

2-dimensional posets (see [l] ) but also of N-free posets. 

Appendix. 

P : number of Prime N-free posets of n elements. 
n 

i : number of irreducible N-free posets w. r. t. series and 
n 

   parallel compositions of n elements. 

v : number of connected N-free posets of n elements. 
n 

u : number of disconnected N-free posets of n elements. 
 

             : number of total N-free posets of n elements . 

Table I . 
 

n    
   
 

v
n

    f 
n

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I 

1 0 1 1 1 1 
. 2 0 0 1 1 2 

3 0 0 3 2 5 

4 0 0 9 6 15 

5 1 1 31 19 49 
6 0 10 115 75 180 

7 7 72 474 313 715 

8 15 456 2097 1440 3081 
9 73 2791 9967 7041 14217 

10 304 16965 50315 36555 69905 
11 1456 104241 268442 199725 363926 
12 7185 652650 1505463 1144109 1996922 

 
 

Z (  (P)) : the cycle index polynomial of automrphism group,  (P),     

of prime N-free poset, P. 

     
                        : m cycles of length i. 
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Table II 

n |    |   Z ( (P))    

5 

 

7 

 

 

 

8 

 

 

 

9 

 

 

 

 

10 
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2 

 

12 

2 

1 

 

65 

8 

 

274 

1 

3 

22 

2 

2 

 

1334 

11 

13 

90 

2 
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