

THE 24th ANNUAL CONFERENCE

ON STATISTICS, COMPUTER SCIENCE

AND ·OPERATIONS RESEARCH

AN ALGORITHM TO COUNT RIME N-FREE POSETS

BY

Bayoumi I. Bayoumi , Mohamed H. El-Zahar

and Soheir M. Khamis

ORGANIZED BY

Institute of Statistical studies and Research

Cairo University

EGYPT

23 - 25 December 1989

number of N-free posets with 10 elements, given in [8] 1985 ,

Proved to be incorrect.

An Algorithm To Count Prime N-Free Posets

Bayoumi I . Bayoumi * ,

BY

Mohamed H. El-Zahar and *

Soheir M. Khamis *

Abstract.

I n this paper we present five algorithms to count the

elements of the c l ass of . So-called, prime N-free posets. Our

method is based on the correspondence between super diagonal

matrices and N-free posets. According to P lya's enumeration

theorem [6] and Stanley's results [11], we obtain an efficient

method to compute the number of N-free posets by using the results

of our program. As a result of our algorithm, the previously known

 Keywords:

Posets, N-free posets , prime N-free posets, enumeration of

N-free posets.

AMS Mathematics subject classification (1980) 05A15 and 06A10.

Department of Mathematics, faculty of science, Ain Shams University.
Cairo. Egypt.

28

§1. Introduction.

In [5] M. Habib and R. H Mohring investigated the complexity of

N-free posets with respect to some well-known combinatorial optimi-

zation problems which are polynomials solvable on series-parallel

posets . Among them are the jump number problem,the isomorphism problem

and the scheduling problem (minimiz ing the sum of weighted

completion times on one machine) .

This paper is devoted to the description of an algorithmic

method to count the elements of the c l ass of N-free posets . N-free

posets have recently gained much attention in connection with the

jump number [10, 12] since it can computed efficiently for these

posets, i.e ., polynomially solvable on this c l ass. This has led to

some structural insights into this c l ass of posets . These propert-

ies , which were studied in [5] and summarized here in §2, have led

to the belief that also other, generally NP-hard problems on

posets should be efficiently solvable on this c l ass. M. Habib and

R. Mohring [5] have shown that both the isomorphism problem and

the 1-machine scheduling problem are hard on this c lass although

they can be solved in polynomial time by means of the

decomposition tree for series-parallel posets. The main reason to·

this behavior of N-free posets is the fact that any given poset can

be embedded into an N-free poset, and thus the complexity of arbitrary

posets can be modeled within N-free posets .

We then introduce in §3 the two representations of N-free

poset which are the block and the matrix representations. Apart

from a possible permutation applied simultaneously to the rows and

the columns, there exists a 1-1 correspondence between the super

' .
29

diagonal matrices of 0 and 1 entri es and unlabeled prime N-free

posets . This correspondence leads to construct an efficient

program. This program which is described in §4 consists of five

algorithms, that are used for counting the number of non-isomorphic

unlabeled prime N-free posets (prime N-free posets for short) of n

elements. By using P lya's enumeration theorem [6] and Stanley's

results [11], one can easily compute the numbers of N-free posets.

The appendix contains these numbers for n 12, and the cycle index

polynomials of automorphism groups of prime N-free posets.

§2 . Fundamental Definitions and Basic Properties.

If a partially ordered set (poset) is denoted by P, then its

underlying set will usually also be denoted by P, and its order

relation by or . By <· we denote the associated covering

relation, i.e ., a <· b if a < b and a c b implies that a =c or

c = b . If a and b are incomparable (i.e., neither a b nor b a) ,

we write a ‖ .

Let Q be a poset. let Q and let

be posets such that Q , are mutually disjoint. Then by

we denote the poset resulting from substituting the elements of

\.

Q by the associated poset (1 i h) . More formally:

a b i with a , b and a b,

or i j with a , b and .
\.

The substitution is proper if 1 < | |< | | for some i. A poset is

decomposable if it can be obtained by proper substitution. Other-

Wise it is said to be indecomposable or prime. This substitution

Q

<

A >

z ·

30

operation and the associated decomposition are well investigated in

[4,9]. We recall the following f acts and theorems, which will be

used throughout the paper.

Each decomposable poset P is obtained by a sequence:

p = Q
1 1
,

, P = P 2 ,
2 1 a

2

Q

. . . , P = P m
m-1 a

m

of elementary substitutions in which each Q . is prime. The Q. is
 j j

unique (up to isomorphism and rearrangement) , and are called the

factors of P .

subset B of P is called autonomous if a < b (a b) for
o o

some b B and a P\B implies that a b (a > b) for al l b B.
0

A poset is a decomposable iff it has a non-trivial autonomous set

B (1 < | | < | |) . Then P =

where P/B denotes the subposet of

P induced by B , and where Q is obtained by rep l acing B by just one

vertex a. I f = {B ,B , ...,B } is a partition of P into autonomous
1 m

sets. Then we denote by P/ the poset obtained from P by rep l acing

the set B by just one representative vertex P/ is called
i

the quotient of P modulo .

Decomposition Theorem. For each decomposable poset P, one of the

following three cases applies.

(1) P =

 , where Q is an antichain. Then P is said to be

obtained by parallel composition of .

(2) P =

 , where Q is a chain , (i.e., linear order).

 (3) p = where Q is a prime poset. Then P is said to

be of the prime type (the irreducible poset w.r.t. parallel and

series compositions) and Q is called the associated prime quotient

poset.

Jl

p p

 31

The c l ass of N-free posets was introduced by Grillet in [3].

He defined them as the c l ass of posets that satisfy CAC property

(Chain-Antichain-Complete, i.e., each maximal chain meets each

maximal antichain) . Grillet also shewed that a poset has CAC

property if and only if it does not contain a subposet on four

elements a, b, c , d with a < b, c <· b. c < d and a‖ , a‖ , b‖ .

Leclerc and Monjardet improved in [7] this characterization by

proving that a poset P has the CAC property if f it does not contain

as a subposet, the poset on four elements a, b, c, d, with a <· b

and c < · b, c < · d, and a‖ , a‖ , b‖ , (Fig.1) . This poset looks

li ke the letter 'N'. Rival in [11]

called them N-free posets (A poset P

has the CAC property iff P has no 'N'

in its diagram as an induced subgraph)
Fig . 1

Unfortunately, being an N-free poset is not a hereditary

property of posets (To obtain such an example just add a vertex on

the covering edge cb in the poset of Fig.1). Even worse (and

awkward with respect to CAC property), there are N-free posets such

that the deletion of any maximal chain violates the property of

being N-free. An example is given in Fig.2. However, if all sub-

posets of an N-free poset are N-free. then it is necessarily

series-paralle1 . ·

Fig .2 An N-free poset w hic h is not hereditary

under the removal of maxi mal chains.

 32

 There exist many different characterizations of N-free posets ,

among those 1et us recal l the most important ones.

Theorem. For a poset P, the following statements are equivalent.

(i) P has the CAC property;

(ii) P is N-free;

(iii) For al l x, y P, ImdPred(x) ImdPred(y) = or

ImdPred(x) = ImdPred(y), where I mdPred (x) denotes the set of

lower covers of x in P.

§3. Two Representations of N-Free Posets.

I n this section, we will present some selected representation s

of N-free posets that are the block and the matrix representations.

Property (iii) of the above theorem states that the set of immediate

predecessors (lower covers) of vertices form a partition of P . This

is a necessary and sufficient condition for a dag (directed acyclic

graph) to be a line graph of N-free poset. According to this

property we describe the block representation of N-free poset as

fo11ows [2].

Let P be a finite N-free poset. A bLock of P means a maximal

complete bipartite graph in the directed covering graph of P. More

precisely a bl ock of P has the form (A.B) where A, B P are such

that A is the set of al l upper covers (in P) of every y B and B

is the set of al l l ower covers of every x A. By convention,

(Mi n P,) and (,Max P) are also blocks where Min P and Max P are

respectively the minimal and maximal elements of P.

Let (A ,B) ,..., (A , B) be al l the blocks of P. Note that for
1 1 k k

any two elements x, y P property (iii) of the above theorem must

be true. Thus the 's form a partition of P and so do the 's.

33

we shall always assume that the blocks of P are ordered such

that for any x P if x and x then i < j . We get the bl ock

representation of P by filling a 2 k array with the s in the

first row and the ' s in the second row i n the above order. This

is illustrated in fig . 3.

1

P

1,2,3

4,5

6

7,8

9.10

11

12

2

1.4

5

8

7,9

3,10

6,11,12

Fi.g .3 The poest P and its b l o c k representation .

Clearly every N-free poset has a unique block representation

apart from a possible permutation of the columns in the array.

IIt is very difficult to use the block representation of an

arbitrary N-free poset on a computer because of the use of the SET

facility, which n eeds more running time. Therefore, we chose to

deal with the dual representation, that is, with the matrix

representation of P , [2] •

Let P be an N-free poset with n elements and k blocks (A , B) ,
1 1

…,() ordered as before. Define a k k matrix M(P)= [

where
 =

.
| |. The prescribed order of the blocks implies

that = 0 whenever i j , that is, M[P] is a super diagonal

matrix. Again M (P) is unique up to a possible permutation applied

Jl

 34

simultaneously to the rows and the columns. The following matrix

is an illustration of M (P), where P is that of Fig.3 .

0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

Fig•4 The matrix representation of the

poset that given in Fig • 3.

This correspondence relation between the matrices and N-free

posets leads to the construction of the described below algorithms

for counting N-free posets.

§4. Counting Prime N-Free Posets.

Here we develop a program to count special type of N-free

posets of n elements. This program is constructed to get the list

of al l compositions of n in inverse lexicographic (lex) order. For

each composition with k parts, 1 < k < n, the _ program creates al l

associative matrices in inverse colexicographic (colex) order,

that satisfy the characterization of matrix representation . For

programming simplicity ·the authors use lower triangle matrices

which are transpose of super diagonal matrices after excluding the

first column and the last row. The first matrix of the list is

constructed by putting the k parts at the main diagonal of a k k

matrix. The next matrix in the inverse colex order is obtained by

replacing pivot row, m, with the next composition of the part number

m. Then modify the above m-1 rows by putting the values of m-1 parts

on the main diagonal and leave the other k-m rows without change.

35

Then the algorithm tests whether this matrix represents a poset

having one component or not . If not the matrix will be excluded and

the next one will be created.

The next ste p i s to check the uniqueness of the matrix under

consideration (The matrix is a unique iff its main diagonal has no

zeros). I n case the matrix is not unique the test of isomorphism

must be applied . The suggested algorithm is used to get al l possible

permutations that can be appli ed simultaneously on the rows and the

columns of the matrix . In the same time the algorithm counts the

number of permutation that lead to accepted matrices (TP) and the

number of permutations that lead to the same matrix (EP) . The first

set of permutation s is the elements of a permutation group whose

cardinality is TP and the second set is the elements of the above

group under which the object left invariant.

According to Burnside's lemma [6], "The number of equivalent

classes i s equal to the average takes over the group, of t he

number of elements t ha t are l eft invariant by a group element "

we obtain the number of distinct posets = EP/TP.

The result of this program is the number of connected N-free

posets. Applying Stanley's results , [11] , we easily computed the

total number of N-free posets .

Unfortunately, the running time of this version increases very

rapidly and i t can't be executed for n 13, (the running time

 at n = 12 on PC/XT with 8 MHZ 8088-1 processor takes more

 than 200 hours). So, the need of a modification to reduce

this running was essential. Since the test of isomorphism needs

running time O (the ·factorial of the order of the matrix).

Then, the algorithm was

Jl

36

modified to deal only with matrices that represent prime N-free

posets. This modification leads to the following improvements :-

(1) The number of compositions of n that used is reduced, (i.e.,

it is much more less than) . All parts of a composition is

not exceed its position, n = ∑

 , where

and

(2) All matrices have 0 and 1 entries only. Since if there exists

 2 this means that this poset has an autonomous set of at

least 2-elements.

(3) The number of matrices that will be tested for isomorphism is

much more less than before.

The result of these improvements reduced the running time to

18 hours only and we hope to get the number of prime N-free posets

with n > 12.

Note that : henceforth we will use the following declared type.

Type
matrix

vector

vector-set

:array [l ..integer_no, l..integer_no] of integer

:array [l ..integer_no] of integer

:array [l ..integer_no] of set of 1..integer-no

A. Assistant Algorithms.

Function Sum (RowNo , CoLNo : integer , A :

{ ∑

 }

matrix): integer

begin

Add 0

for i 1 to CoLNo do
Add

 Add + A [RowNo,i]

Sum

end.
 Add

Function Pivot _Row(n : integer, Part : vector) :integer

{Search for the first row, i , at which Part[i] i}

begin

 i 1
repeat

i i + 1

until(Part[i] i)or (i = n)
Pivot -Row i

end.

37

procedure Adjacent_sets_of_Elements (A : matrix,

 var Adj: vector_set)

begin

ElementNo 1

for i 2 t o n do

for j 1 to i do
if A [i , j] 0

then

ElementNo Element + l;

f or i 2 to n do
f or j 1 t o i do

if B[i,j] 0
then begin

f or k i + 1 t o n do

if B[k,i +l] 0
then begin

B[i ,j] ElementNo

end

X[B[i,j] X[B[i,j]] {B[k,i+l]}
Y[B[K,I +l] Y[B[k,i+l]] {B[i,j] }

{ X : array of upper adjacent sets,

Y : array of lower adjacent sets} .

end

f or i 1 to n-2 do

for j i +1 to n-1 do

if j X[i]

then begin

for k j+l to n do

if k X [j]
then

X[i] X[i] {k}; Y [k] Y [k] {i}
end

f or i 1 to n do

Adj [i] X[i] Y[i]
{ Adj :array of total adjacent sets }

end.

Procedure CycLe_Type_Of_Mapping (: vector, A : matrix,

 var Cyc le_type : vector)

{Get the cycle type of automorphism mapping

which is(j ,j ,...,j) s.t. P = ∑

 }

1 2 p \.

begin

for i 1 to n do

f or j 1 to i do

if B[i,j]

then begin

L [B[i,j],l] i;

L[B[i.j],3] B[i.j]
end

L [B[i ,j],2] j

k 0
repeat

k k + l
if L [k , 3] 0

Jl

.

38

then begin

i [L[k,l] +l] – 1; j

if (L [k ,1] = i) and (L [k ,2] = j)

then begin

[L[k,2]

Cycle_type[1]

(Cycle_type [i] is

L[k,3]

end

else begin

Cycle_type [1] + 1

the cycle of length i)

0

Ln 1 {Ln

first_Element

Closed_Cycle

repeat

r k-1

repeat

is the length of cycle}

 L [k,3]

 false

r r+l

until (i = L[r,1]) and (j = L [r,2])

Next_Element L [r,3]; L[r,3] 0
if first_Element = Next_Element

then begin

Closed_Cycle

L[k,3]

Cycle_type[Lnl

end

else begin

true
0

Cycle_type[Ln] +l

Ln

i

 j

Ln + 1

 [L [r,l]+l] -1
 [L[r,2]

end

until k = P
end.

until

end

 end

Closed_Cycle

B. Basic Algorithms.

Algorithm (1) .

Procedure Get_first_Comosition (P : integer , var n

 var Part

:integer,

:vector)

begin

{Get the first composition of P in the inverse l ex

order list that satisfy the following condition:

 = i for 1 i n-1, 1 and 2 n-1}

Part [l] l ; n l ; Temparory P-1

repeat

n n + l; Part [nl n

Temparory Temparory - n
until Temarory < n+l
if Temparory = 0
then

Part[n] Part[n] - 2; n n + l; Part[n] 2

. '

39

else begin

if Temparorv = 1
then

Part [n-1] Par t [n-1] -1;
else

Part[n] 2

end.

end

n n +1; Part [n] Temparory

Proced ure Get _Next _Composition (P : integer , var n :integer,

var Part : vector)

{Get the next composition of P in
order t:hat satisfy the following

1 i for 1 i n-1,

the inverse lex

condition :
 1 and 2 n-1}

begin
i 0
repeat

i i + l

until Part [i] 1
X Par t [i] ; Part[i] 1

if i = n
then begin

Part[n] 2 ;

Part [n] 2;

end

else begin

n n+ l
X X-2

if Part[i +l] + ·l > i +l
 then begin

· j i ;

 repeat
 j j + l

Done false

 if Part [j] +1 > j

then

x x + l ; Part [j] 1

else

Part[j] Part[j]+l;
until Done

if' j > n

then begin

Done True

and

end

Part [j]

X

2 ;

X-1; n n+l

end

X X-1

if x . 2

else Part[i+l] Part[i+l] +l

then begin

j 1
repeat

j j + l ;

if x < j

then

X X + Part[j]

.
.... .
'

40

 Part [j] j ; X

else

until x= 0

end

Part [j]

else Part[2] 1
if Part [n-1] - 1
then begin

i n-1

repeat
i i-1

until (Part[i] 1) or (i = 0)
 if i

 then begin

Part[i]

Part[n-1]

end

Part[i] - 1

Part[n-1] + 1

end

else Get_Next _Composition

if Part[n] =n

then Get_Next _Composition

end•.

Algorithm(2).

Procedure Create_f irst_Matrix (n: integer, Part

var A

:vector,

:matrix)

begin

for i

for j

1 to n do
1 to Part [i] do

A [i,i+l-j] 1

for i

for j

end.

1 to n do
i to n do
A[n+l, i] A [n+l,i] + A [j ,i]

Procedure Cr e a te_Next _Matrix (n , m : integer, Part

var A
:vector,

:matrix)

{Create next matrix that represents N-free poset. First, we

change the pivot row , m . Then modify the upper m-1 rows and

leave the other n-m rows without change}.

begin

i 1
repeat

i i +l

until A [m, i] 0
A[m, i] 0; X A[m, 1] + 1 ;

if x > i-2
then begin

repeat

j i-1

repeat

A [m, 1] 0

41

 j j+l

until A [m ,j] 0

A[m ,j) 0 ; X X+l

 until X j-1
 i
 end

 for j 1 to X do

 A[m,i-j] 1
 for i 2 to m-1 do

begin if Part [i] i

 then begin

for j 1 to Part[i] do
A[i,i +l-j] 1

end

end

for j i - Part[i] downto 1
A [i.j]

do

 0

for i 1 to m do
begin

A[n+l,i] 0
for j i to n do

A[n+l,i] A[n+l,i] + A [j,i]

end.

end

Algorithm (3)

Procedure Test_Connectedness (n : integer, A : matrix,

var Poset_Connected : boolean)
{Search for this matrix that represents a poset

with one component or more . In the first case we

return with Poset_Connected is true}

Procedure Get_Path (D : integer)

var

begin

i , j : integer

for i 2 to D do

if A [D , i] 0
then begin

B B U {I i -1}

if i 2 then Get_Path(i-1)
end

begin

end.

L 0 { L : the number of components}
for k 2 to n do
begin

i f A[n,k] 0

then begin

B

if k

 if L =

{k-1} {set of adjacent e l ements of k}

 2 then Get_Path (k-1)

0

'.
42

then begin

L l; C [l] B

{C is an array of sets that represent

disjoint componenets of a poset}

else

end

begin

j 0
repeat

j

until (B
if j =L+l

j + 1

 C[j]) or (j L+l)

then L L+l ;

else begin
q j ;

repeat

C[L] B

C[q] C[q) B

j j + 1

until (B C[j]) or(j L+l)
if j L+l
then begin

v
C[q]

 j - 1

C[q] C[j]
for i

if (B
then

j+1 to L do

C[i])

C[q] C [q] C[i]
else begin

V V + l

C[V] C[i]

end

end

if L = 1
then Poset_Connected

true

L V

end

else

end.

{A matrix represents

Poset_Connected

{A matrix represents

a connected prime N-free poset} .

false

a disconnected prime N-free poset} .

Algorithm (4)

Procedure Check _Prime (n: integer, A: matrix,

 var Poset_Prime : boolean)

{Decide whether this matrix represents prime poset or not.

I n the first case we return with Poset_Prime is true}.

begin

Adjacent_Sets_Of_E Lements(A, Adj)

Poset_Prime false

for i 1 to n do
if Adj [i] = 0 then return

for L 1 to n-1 do

for k L+l to n do

·
43

 begin

 A1 {L} ; A2 {L..K}

 {A1,A2 : two sets are used for testing if their exist an

repeat

 autonomous set}

Untested _Elements A1/A2;

i L-1

while A1 {1..i} do

begin

A1 A2

i either i+1 if (i+1) A l or min(A1) > i+1

while Untested_Elements do

 begin

j either i+l if (i+1) Untested_Elements
or min(Untested_Elements) > i+1

R (Ad j[i]/Ad j[j] (Adj[j]/Adj[i])

if R ({1..k}/{L,k}) =

 then go to 100

A2 A2 R

if A2 = {1..n}

then go to 100

Untested_Elements Untested_Elements/{j}

end

end

until A1 = A2

return

100:end

Poset_Prime tr ue

end.

Algorithm (5)

Procedure Test _Isomorphism (n , Pos : integer, A : matrix,

var Equ, Total :integer)

{Apply all possible permutations. that create by the Johnson

Trotte algorithm, simultaneously on the rows and the columns of

A to get the number of matrices which are isomorphic with A}

begin

f or i 1 to n+1 do

 [i] i; [i] i ; d[i] -1

A {Pos+1...n}; Last._Perm false

Total 1; . Equ 1

{Equ is the number of' automorphic posets

and Total is the number of' isomorphic posets}

Cycle _ type _of Mapping (, A , C)

while not Last_Perm do

 begin

if A

then begin

m max{i, i A}; j

 Move false

if (A[m-1, [j+d[m]]=0) and (m > [j+d[m]])

then begin

 [j] [j+d[m]]; [j+d[m]] m

[

·.\.
44

 [m] j + d [m]; [[j]] j

end

Move true

else begin

if m < [j+d [m]]

then

d[m] - l; A A/{m}

else if (d[m]=-1) and (Move)
then begin

A A { m+l ...n}
Total Total . + 1
for i 1 to n do

for j 1 to i do
if A[i ,j] A[[i+l]-1, [j]]
then go to 200

Equ. Equ + 1
Cycle_type_Of_Mapping (,A,C)

end

200: end

end.

end

else Last_Perm true

Main Program.

step 0

step 1

step 2

Find P and MaxNo

{P : number of points
MaxNo: maximum number of parts of composition ofP}

Set 0

{ : number of prime N-free posets of P points}.

Get_F irst_Composition (P, N, Part)

{ N: number of parts of ·composition of P.
Part : the array of n elements whose elements

are n parts of composition of P}

if N = MaxNo then go to step 16

step 3 Create_First_Hatrix (N,

{ A :an n+l
Part, A)
n matrix that

represents

step 4

 a labeled

if A[l,l] A[N+1,1]

 then Check_Pr.ime (P ,

else go to step 6

N-free poset} .

N. A, Poset_Prime)

step 5 if Poset Prime then + 1
-

step 6 M

{M :

Pivot_Row (N, Part)

the pivot row at which Part[M] M}.

. step 7 if ((M=N) and (A[N, 1] 0)) or((A[N+l,M] l)and (A[M,M] l)
then Create_Next _Matrix (N, M, Part, A) , go to step 9

p p

45

step 8 Set M M-1

repeat

M M + l

while Sum(M, Part[M], A) = Part[M] do M M + 1
until (A [N+1,M] 1) or (A [M,M] =0) or

((Sum (M, Part[M] -1,A) Part[M] -1) and Part[M] 1))
Create_Next_Matrix (N, M, Part, A)

step 9 if A[l,1] = A[N+l,1] ,
{this poset has a unique minimal element}

then M 2 go to step 14

step 10 if A{N ,1] = 0.
{this poset has no isol ated point}

then Test_Connectedness(N . A. Post_Connected).
else M N , go to step 14

step 11 if Poset_Connected

then Check_Pr ime(N , A, Poset Prime)
else M Pivot_Row (N, Part), go to s t ep 1 4

step 12 if not (Poset_Prime)

then M Pivot_Row (N, Part), go to s t ep 14

step 13 i 1

repeat i i + 1
if i = N

then P P + 1

else begin

until (A[i,i] = 0) or (i = N)

end

Test_I somrphism (N, i , A, Equ , Total)
P

 P +
Equ

P P Total

step 14 if Sum(N, Part[Ml -1, A) Part[Nl - 1

then go to step 7

step 15 Get_Next _Composition (P, N, Part),

go to step 2

step 16 stop.

Finally, the number of N-free posets, f , can be obtained as

n

follows:

(1) Executing the program one can count the number of prime

N-free posets, and determine the cycle index polynomial of

automorphism groups (Tables I and II in the appendix).

(2) Ap plying P lya's enumeration theorem [6] with knowing P
n

n

...',

46

and cycle index polynomials compute the numbers of N-free posets,

i ,that produced by substitution composition.
n

(3) According to Stanley's results [11] , the numbers of

Connected, v , and total N-free posets can be easily determined
n

by using the computed numbers i .
n

Note that f or details see [1], the authors computed the

numbers of 2-dimensional posets via counting the numbers of prime

2-dimensional posets by using the same method.

At the end of the paper, we must record that MOhring's results

given in [8] are incorrect for n = 10 not only in the case of

2-dimensional posets (see [l]) but also of N-free posets.

Appendix.

P : number of Prime N-free posets of n elements.
n

i : number of irreducible N-free posets w. r. t. series and
n

 parallel compositions of n elements.

v : number of connected N-free posets of n elements.
n

u : number of disconnected N-free posets of n elements.

 : number of total N-free posets of n elements .

Table I .

n

v
n

 f
n

I

1 0 1 1 1 1
. 2 0 0 1 1 2

3 0 0 3 2 5

4 0 0 9 6 15

5 1 1 31 19 49
6 0 10 115 75 180

7 7 72 474 313 715

8 15 456 2097 1440 3081
9 73 2791 9967 7041 14217

10 304 16965 50315 36555 69905
11 1456 104241 268442 199725 363926
12 7185 652650 1505463 1144109 1996922

Z ((P)) : the cycle index polynomial of automrphism group, (P),

of prime N-free poset, P.

 : m cycles of length i.

47

Table II

n | | Z ((P))

5

7

8

9

10

11

………………………………………………………………………….

………………………………………………………………………….

………………………………………………………………………….

………………………………………………………………………….

 +

………………………………………………………………………….

+ 2

1

5

2

12

2

1

65

8

274

1

3

22

2

2

1334

11

13

90

2

4

2

48

References.

[1] B. I . Bayoumi, M. H. El-Zahar and S. M. Khamis (1988),
"Enumeration of 2-dimensiona l posets vi a counting prime 2-
dimensional posets", The 23 th Annual Conference (Computer

Science & its Applications) in Statistics, Computer Science and
information and Operation Research, 50-70.

[2] B. I. Bayoumi, M. H. El -Zahar and S. M. Khamis,

"Asymptotic enumeration of N-free partial orders", Order j .,
to appear.

[3] P. A. Grillet (1969). "Maximal chains and antichains". Fund.

 Math. 65, 157-167.

[4]· M. Habib and M. C. Maurer (1979). "On the X-join

decomposition for undirected graphs", Discrete Appl. Math. l
, 201-207.

[5] M. Habib and R. Mohring (1987), "On some compl exity

properties of N-free posets and posets with

bounded decomposition diameter", Discrete Math. 63, 157-182.

[6] F. Harary and E. Palmer (1973), " Graphical

 enumeration", New York and London: Academic Press.

[7] B. Lec lerc and B. Monjardet (1973). "Orders CAC", Fund. Math.

11-22.

[8] R . .Mehring (1985),"A l gorithmic aspects

 graphs and interval graphs" ,in Graphs

and order , Reidel ,Dordrecht, 41-101.

of comparabil ity

[9] R. H. Mohring and F. J . Radermacher (1984), "Substitution

decomposition for discrete structures and connections with

combinatorial optimization", Ann. Discrete Math. 19, 257-356.

[10] I . Riva l (1983), "Optimal linear extensions by interchanging

chains", Proc. Amer. Math. Soc. 89, 387-394.

[11] R . P. Stanley (1974), "Enumeration of posets generated by

disjoint unions and ordinal sums". Proc. Amer. Math. Soc. 45
(2) , 295-299.

[12] M. M. Syslo (1985), "A graph theoretic approach to the

jump number problem" in I.Rival, ed. Graphs and order, (

Reidel, Dordrecht), 185-215.

