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  Abstract: Background: Protein sequence analysis helps in the prediction of protein functions. As the 

number of proteins increases, it gives the bioinformaticians a challenge to analyze and study the similar-

ity between them. Most of the existing protein analysis methods use Support Vector Machine. Deep 

learning did not receive much attention regarding protein analysis as it is noted that little work focused 

on studying the protein diseases classification.  

Objective: The contribution of this paper is to present a deep learning approach that classifies protein 

diseases based on protein descriptors.  

Methods: Different protein descriptors are used and decomposed into modified feature descriptors. 

Uniquely, we introduce using the Convolutional Neural Network model to learn and classify protein 

diseases. The modified feature descriptors are fed to the Convolutional Neural Network model on a da-

taset of 1563 protein sequences classified into 3 different disease classes: AIDS, Tumor suppressor, and 

Proto-oncogene.  

Results: The usage of the modified feature descriptors shows a significant increase in the performance 

of the Convolutional Neural Network model over Support Vector Machine using different kernel func-

tions. One modified feature descriptor improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, and 22% for 

evaluation metrics: Area Under the Curve, Matthews Correlation Coefficient, Accuracy, F1-score, Re-

call, and Precision, respectively. 

Conclusion: Results show that the prediction of the proposed CNN model trained by modified feature 

descriptors significantly surpasses that of Support Vector Machine model. 
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1. INTRODUCTION 

Proteins are an important component of every cell in  

the body. They are used by the body to build and repair 

damaged tissues. Furthermore, they are essential for making 

enzymes, hormones, and other body chemicals. They are an 

important building block of bones, muscles, cartilage, skin, 

and blood.  

Proteins have three different types of structures: primary, 

secondary, and tertiary [1]. The simplest form of those struc-

tures is the primary structure that is composed of a sequence 

of amino acids bound by peptide bonds. Despite their im-

portance, any change in the primary structure of the protein 

may lead to different products, resulting in different behav-

ior, which can be lethal. 

Recent research shed light on using protein physicochem-

ical properties in extracting features that are used to detect 

protein similarities. Based on the extracted features, statistics 

are made that show the extent of the protein similarities, and 
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thus their classification into families, and the determination 

of their proximity to each other.  

Studies have shown that when the similarities between 

protein sequences are more, their functionality is also more 

similar [2], which motivated further analysis of the primary 

sequence of proteins. The protein classification is a topic 

worth scrutinizing because of its importance in revealing the 

function of proteins of unknown function or activity that 

may lead to death. 

Information Systems Department, Faculty of Computer 

and Information Sciences, Ain Shams University, Cairo 

11566, Egypt 

Since then, protein sequence alignment methods have 

gained more intensive attention in bioinformatics [2]. One of 

the main shortages of alignment methods is that they tend to 

reduce accuracy in exchange for improving efficiency [3]. 

Deep learning techniques have started to be used fre-

quently and widely in the field of data analysis. Convolu-

tional Neural Network (CNN) has been used in the medical 

research field, such as analyzing health informatics. It is also 

noted that researchers in the medical analysis field are mov-

ing into CNN and obtaining desirable results [4]. Deep learn-
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ing did not receive much attention regarding the study of 

protein analysis. Moreover, the usage of Empirical Mode 

Decomposition (EMD) with CNN was used in the classifica-

tion of cardiovascular diseases but not once on protein dis-

eases.  

The related work in the field of protein sequence analysis 

has a lot of variations. We will cover the variations proposed 

by many researchers starting from the representation that 

helps in the analysis phase to the algorithms used for feature 

extraction and making machine learning and neural network 

models. 

One approach shows that 2D data was used to obtain 3D 

information by using the amino acids evolution index as the 

first dimension and the class of amino acid information as 

the second dimension [5]. Then, the DFT is used to trans-

form the sequence signal to the frequency domain. After 

that, the distance of sequences is computed based on the new 

numerical sequences to analyze the similarity of protein se-

quences. 

It has been shown that amino acid physicochemical prop-

erties are highly related to protein structure and function [3]. 

Thus, several methods are developed based on these proper-

ties; for example, SVM-RQA proposes a scheme for remote 

homology detection by using both the amino acid properties 

and Recurrence Quantification Analysis (RQA). SVM-PCD 

uses the normalized physicochemical distributions of the 4-

mers in protein sequences.  

A novel position-feature model for protein sequences is 

based on physicochemical properties of 20 amino acids and 

graph energy [6]. According to the specific position of amino 

acids in the sequence, the position-feature matrices consist-

ing of 0 and 1 were constructed the matrices were mapped to 

bipartite graphs. By computing the energy E of each graph, a 

characterizing vector E* for the protein sequence is obtained. 

Modifying the vector E*, a protein-based characteristic B-

vector is used, and relative entropy is applied to analyze the 

similarity/dissimilarity between sequences. 

Another method for analyzing protein sequence similari-

ty [7] calculated the spectral radii of 20 amino acids and put 

forward a novel 2D graphical representation of protein se-

quences. To characterize protein sequences numerically, 

three groups of features were extracted and related to statisti-

cal, dynamics measurements, and fluctuation complexity of 

the sequences. With the obtained feature vector, two models 

utilizing Gaussian Kernel similarity and Cosine similarity 

are built to measure the similarity between sequences. 

Fractal geometry [2] is a non-integer and useful concept 

in describing the dynamical structure. It is also a useful 

method for indicating variations in both amplitude and fre-

quency of a signal. Based on the concept of fractal geometry 

and the physicochemical properties of amino acids, a hybrid 

method based on discrete wavelet transform and fractal di-

mension to study and analyze the similarity of proteins is used. 

The main highlights of an algorithm for analyzing ECG 

signals [4] include feature extraction with no need for using 

selection techniques. An 11-layer CNN model is implement-

ed and validated using 10-fold cross-validation, hence in-

creasing the robustness of the system. Denoising is not re-

quired.  

Support Vector Machine (SVM) was used for the predic-

tion of Phage Virion proteins using a set of optimal features 

[8]. A feature selection protocol is employed to identify the 

optimal features from a large set that included amino acid 

composition, dipeptide composition, atomic composition, 

physicochemical properties, and chain-transition distribution. 

Deep learning was introduced in protein sequence analy-

sis to predict protein solubility that is significant in pharma-

ceutical research [9]. CNN is the model used in this research. 

Fifty-seven features are used to represent the protein se-

quence that are sequence-based features and structural fea-

tures. 

Deep learning models are also used on another type of 

feature as Electrocardiograph signals (ECG). Learning fea-

tures based on machine learning algorithms and CNNs have 

added an extra boost to the literature and successful ECG 

signal analysis. It has been extensively used in heart disease 

classification [4, 10]. 

In one study, the CNN is designed to handle one-

dimensional ECG data, and all the convolution operations in 

the convolutional layers are performed on the 1D sequence 

[10]. The kernel size in each layer is modified to be applied 

to the 1D sequence. The first five layers of the network are 

convolutional layers and are followed by three fully connect-

ed layers. The final output of the network has a soft-max 

regressor with a specific number of classes that vary among 

different ECG databases. 

Based on the above literature review, it can be noted that 

most of the existing protein analysis methods use SVM. 

Deep learning did not receive much attention regarding pro-

tein analysis. It is noted that there is limited work focusing 

on studying the protein diseases classification. 

In this paper, a deep learning approach that classifies pro-

tein diseases based on protein descriptors is presented. Pro-

tein features are calculated using different feature extraction 

groups (i.e., Amino acid composition, C/T/D). The features 

are then decomposed into Intrinsic Mode Functions (IMF) 

using EMD. The higher-order IMF is used as modified fea-

ture descriptors. A deep learning model is developed using 

conventional layers. The proposed approach is applied to the 

feature descriptors of the 1563 protein sequences that are 

classified into 3 different disease classes. The evaluation 

metrics used to evaluate the work are Matthews Correlation 

Coefficient (MCC), precision, recall, accuracy, F1-score, and 

Area Under the Curve (AUC). 

2. MATERIALS AND METHODS 

2.1. Dataset 

The Dataset used can be downloaded from uniprot.org 

[11], the universal resource for sequence and functional 

information relating to proteins. Three sample diseases 

were chosen: AIDS, tumor suppressor, and proto-oncogene. 
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The reason behind choosing those three is that they have 

almost the same number of available protein sequences, 

which helps in avoiding bias classification problems. The 

available protein sequences for those diseases are 518, 512, 

and 567 sequences, respectively. The variance in the num-

ber of protein sequences among the three selected diseases 

are 1.1%, 8.6%, and 9.7%. On the other hand, the variance 

is massive when compared to other diseases. For example, 

AIDS has 74.9% more protein sequences than malaria. Pro-

to-oncogene has 38.6% and 82.8% fewer protein sequences 

than allergen and disease mutations, respectively. Also, 

tumor suppressor has 59% more protein sequences than 

epilepsy. The protein sequences have been reviewed [11], 

and additional biological information about the diseases is 

also available [12, 13]. 

A filtration process is required. The protein sequences of 

the three diseases were compared against each other, and it 

was found that tumor suppressor and proto-oncogene pro-

teins share 17 identical protein sequences. Thus they were 

removed. 

2.2. Evaluation Metrics 

To quantify the performance of the proposed model, the 

following measures were calculated as shown in Table 1. TP, 

TN, FP, and FN are short-term, denoting the total number of 

True Positive, True Negative, False Positive, and False Neg-

ative of instances, respectively.

2.3. The Proposed System Architecture 

In this section, we present the system architecture of the 

proposed work and explain in detail how each module works. 

The proposed system architecture is shown in Fig. (1). It con-

sists of three modules: feature extraction, feature processing, 

Table 1. Details on evaluation metrics. 

Metric Equation Refs. 

Accuracy �� � ��

�� � �� � �� � ��
 

[14] 

Recall ��

�� � ��
 

[15] 

Precision ��

�� � ��
 

[16] 

F1-score 
���

��������	��������

��������	 � �������
 

[17] 

Matthews Correlation Coefficient �������� � �������

�� � �� �� � �� �� � �� ��� � ���
 

[17] 

Area Under the Curve �

�
��

��

�� � ��
� �

��

�� � ��
� 

[8] 

 
 

 

Fig. (1). Protein disease classifier system architecture. 
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and neural network training and analysis. Module details are 

presented in the following subsections. 

2.3.1. Feature Extraction Module 

In this module, the main step in protein analysis is con-

ducted, which is feature extraction. Because of the amino 

acid representation, protein sequences cannot be fed to the 

CNN model. Therefore, this step focuses on the digital rep-

resentation of a protein sequence into a feature descriptor 

that can be analyzed using any machine learning methodolo-

gy. Using features extracted from amino acids guarantees 

building a powerful predictor [3]. 

There are twelve groups of feature descriptors [18]. In 

this paper, we have used the amino acid composition group, 

grouped amino acid composition, and C/T/D groups. Feature 

extraction was conducted using the iFeature website [18]. 

Three groups of feature extraction methods were used, as 

shown in Table 2. 

2.3.2. Feature Processing Module 

In this module, the feature descriptor is decomposed into 

IMF using EMD [2].  IMF forms the multi-scale feature de-

scriptor from higher frequency to lower frequency. The high-

frequency features are then used as they are purified of any 

noise [10]. The IMFs are then normalized and ready to be 

used for the next step, which is the model training and analy-

sis. 

The feature descriptors are decomposed into IMFs that 

are ordered from high significance to lower significance (we 

use significance to refer to frequency). The higher-order IMF 

represents a modified feature descriptor without most of the 

noise [10]. The lower order IMFs are neglected as they are of 

lower frequencies, thus considered as noise. The higher-

order IMF is then normalized using standard scaler that fol-

lows Eq. (1): 

z=(x-u)/s        (1) 

Where x is the feature, u is the mean, and s is the stand-

ard deviation. 

 

2.3.3. Neural Network Training and Analysis Module 

In this module, the normalized IMFs are fed to the CNN 

constructed of 8 layers (3 convolutional, 1 flatten, and 4 fully 

connected layers). The model is then trained, validated, and 

finally tested using the testing set. After the model is trained, 

it is ready to be used for prediction. The model is built using 

three components: (I) convolutional layers, (II) activation 

functions, and (III) dense layers. 

2.3.3.1. Convolutional Layer 

The convolutional layer serves as the main block of a 

CNN as it conducts computationally intensive lifting [4]. It 

aims to extract features from the protein descriptor and 

learns to predict. In our model, the type of the first three lay-

ers of the model is convolutional layers. 

2.3.3.2. Activation Functions 

The activation functions help in the learning process. The 

Rectified Linear activation function (ReLU) [10] is a piece-

wise linear function that will output the input directly if it is 

positive; otherwise, it will output zero. It allows the model to 

learn faster and perform better. It is used in all layers except 

the output layer (layer 8) that has a SoftMax activation func-

tion. 

2.3.3.3. Dense Layers 

The dense layers form fully connected networks. The last 

dense layer has an output of three neurons as it represents the 

three labels of the three diseases used in the training process. 

2.4. The Proposed Deep Learning Model 

In this section, we present the detailed structure of the 

proposed deep learning model. The deep learning model 

proposed is built using CNN. The CNN model is designed to 

handle 1D data, and all the convolution operations in the 

convolutional layers are performed on the 1D sequence. The 

kernel size in each layer is different. The first three layers of 

the network are convolutional layers and are followed by one 

flatten layer and four fully connected layers. The final output 

of the network has a SoftMax regressor with a specific num-

Table 2. A detailed description of the three groups of amino acid feature extraction techniques. 

Group Descriptor Equation 
Number of 

Features 

Amino Acid 

Composition 

Amino Acid 

Composition 
� � �

� �

�
� � � ������� � � � ��� 20 

Group Amino 

Acid Composi-

tion 

Grouped Dipep-

tide Composition 
� �� � �

���

� � �
� �� � � ���������������� 25 

C/T/D 

C/T/D Composi-

tion 
� � �

� �

�
� � � ��������������� ������������ 39 

C/T/D Transition 
� �� � �

� �� � � � �� �

� � �
� �� �

� ����������������� �������� ����������� � ������������� ������� 
39 
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ber of classes that vary among different databases. In our 

work, there are three classes, so the output has three neurons.  

Based on the numbers from Table 2, the sizes of the 

feature descriptors used are different, which causes the dif-

ference in the number of neurons in each layer of the first 

four layers. The first convolutional layer using the AAC 

feature descriptor is fed by a 20 × 1 sequence and is modi-

fied with 512 filters of size 8 × 1. Consequently, an output 

of size 13 × 512 is produced. Similarly, the other three fea-

ture descriptors, i.e., GDPC, CTDC, and CTDT, are used. 

The input size will be 25 × 1, 39 × 1, and 39 × 1, respec-

tively. The output resulted is 18 × 512 using the GDPC 

feature vector and 32 × 512 using CTDT and CTDC feature 

descriptors. 

The second convolutional layer uses 256 filters of shape 

4 × 1 that converts the output resulting from AAC feature 

descriptor to a shape of 10 × 256. The output resulting from 

the GDPC feature descriptor is 18 × 256, and from CTDT 

and CTDC, the feature descriptor is 29 × 256. 

The third convolutional layer converts the respective in-

put feature vector space to a shape of 10 × 128, 15 ×128, 29 

× 128, and 29 × 128 using AAC, GDPC, CTDT, and CTDC 

feature descriptors, respectively. The corresponding layer 

type, number of filters, activation function, and kernel size 

are shown in Table 3.  

Throughout the CNN model, ReLU acts as the non-

linear activation function used in all layers except the 

eighth layer that uses the SoftMax activation function to 

classify the descriptor to the desired class. The flatten layer 

converts the output of the previous convolutional layer to 

feed layer number 5 that is the first fully connected layer. 

The model is trained using 10-fold cross-validation. Also, a 

validation set is used using a validation split equal to 0.01. 

The number of epochs used is 40 epochs for each fold and a 

batch size of 5. 

3. RESULTS AND DISCUSSION 

In order to assess the proposed deep learning model, a 

comprehensive set of experiments was conducted with re-

spect to the model accuracy. The objectives of the experi-

ments are: (I) compare SVM using different kernels to find 

the best SVM kernels to be used in further experiments, (II) 

compare the usage of CNN with popular SVM in predicting 

diseases, and (III) show the impact of IMFs to the perfor-

mance of CNN and SVMs. 

3.1. Experiment I 

The objective of this experiment is to compare the per-

formance of the SVM algorithm with different kernel func-

tions on the four features without being modified. The kernel 

functions used are linear, polynomial, Radial Basis Function 

(RBF), and sigmoid. We will be using them as SVM-linear, 

SVM-poly, SVM-rbf, and SVM-sigmoid, respectively. It is 

noted that SVM performs well when it comes to a balanced 

dataset [17]. Therefore, it is suitable for comparison with our 

proposed model (with its balanced dataset), and it stands as a 

good competitor to our CNN model.  

As shown in Fig. (2), it is observed that SVM-poly out-

performs in accuracy for all features used. SVM-poly using 

CTDT features shows the highest accuracy and outperforms 

SVM-rbf, SVM-linear, and SVM-sigmoid by 19.8%, 21.9%, 

and 56.7%, respectively. Similarly, SVM-rbf comes second 

in place, outperforming SVM-linear and SVM-sigmoid. 

Since the highest accuracies reached have been obtained by 

SVM-poly and SVM-rbf, they will be used in further exper-

iments. 

 

Fig. (2). Accuracy comparison between SVM with four different 

kernel functions. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

Table 3. Detailed description of the 8 layers of the CNN model used for disease classification. (~) differs based on the input size of 

the feature descriptor. 

Layers Type Number of Filters Activation Function Kernel Size 

1 Convolution 512 ReLU 8 

2 Convolution 256 ReLU 4 

3 Convolution 128 ReLU 1 

4 Flatten ~ ReLU - 

5 Dense 64 ReLU - 

6 Dense 32 ReLU - 

7 Dense 16 ReLU - 

8 Dense 3 SoftMax -
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3.2. Experiment II 

The objective of this experiment is to compare the per-

formance of the CNN model with the SVM algorithm using 

the two superior kernel functions from experiment I (SVM-

poly and SVM-rbf). The four normal feature descriptors are 

fed to the CNN, SVM-poly, and SVM-rbf. 

Fig. (3) shows a detailed comparison between CNN, 

SVM-poly, and SVM-rbf using the six-evaluation metrics 

explained earlier in this section. It can be noted that SVM-

poly outperforms both CNN and SVM-rbf using normal fea-

ture vectors in all evaluation metrics. SVM-poly shows bet-

ter precision outperforming SVM-rbf and CNN by 20.1% 

and 27%, respectively, using CTDT normal feature de-

scriptor as an example. MCC is superior in SVM-poly than 

SVM-rbf and CNN by 31.9% and 33.3%, respectively. 

SVM-poly surpasses CNN in accuracy, recall, F1-score, and 

AUC by 18.6%, 19.6%, 25.5%, and 12.8%, respectively. 

SVM-rbf outperforms CNN by 6.4%, 42.9%, 23.5%, 2%, 

21%, and 3.3% in AUC, precision, recall, MCC, accuracy, 

and F1-score, respectively. 

3.3. Experiment III 

The objective of this experiment is to compare the per-

formance of the CNN, SVM-poly, and SVM-rbf using the 

modified feature descriptors using EMD. Fig. (4) shows a 

significant enhancement in all evaluation metrics, ultimately 

making CNN model superior to both SVM-poly and SVM-

rbf. As shown in Fig. (4), the performance of CNN and 

SVM-rbf enhanced when using the four modified feature 

descriptors in all evaluation metrics. 

 As shown in Fig. (3), it can be noted that SVM-poly did 

not achieve better results when using the modified feature 

descriptors than those in experiment II. It can be shown that 

CNN’s performance surpasses the performance of SVM-rbf 

by 4%, 24.2%, 23.3%, 24%, 29%, and 10.3% in precision, 

recall, accuracy, F1-score, MCC, and AUC, respectively. 

 

Fig. (3). Performance comparison of CNN, SVM-rbf, and SVM poly using normal feature vectors with several evaluation metrics: (A) Preci-

sion, (B) MCC, (C) Accuracy, (D) F1-score, (E) Recall, and (F) AUC. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
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CNN also surpasses SVM-poly by 17.6%, 27.8%, 27.2%, 

27.6%, 40.1%, and 18.4% in precision, recall, accuracy, F1-

score, MCC and AUC, respectively. 

To better represent the impact of IMFs, Fig. (5) illustrates 

the improvement of the CNN model predictions using the 

four modified feature descriptors. AUC has the highest im-

provement of 31.6% using the modified CTDC feature. 

MCC, accuracy, F1-score, precision, and recall show signifi-

cant improvement by 77.7%, 46.6%, 62.1%, 47%, and 

66.4%, respectively, when using the modified GDPC modi-

fied feature descriptors. It can be noted that using AAC and 

CTDT modified feature descriptors also have noticeable im-

provements on the CNN model. AAC modified feature de-

scriptors improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, 

and 22% in AUC, MCC, accuracy, F1-score, recall, and pre-

cision, respectively. CTDT modified feature descriptors also 

improved by 19.5%, 39.6%, 23.3%, 29.9%, 24.3%, and 

31.2% in AUC, MCC, accuracy, F1-score, recall, and preci-

sion, respectively. 

CONCLUSION 

Deep learning techniques such as CNN have not been 

exploited in protein classification. The objective of this work 

is to introduce the application of CNN to protein diseases 

classification. Four types of protein features were extracted 

from the protein sequences and were modified using EMD 

and then trained on CNN and SVM models. SVM-poly 

shows superior results when using the normal feature vec-

tors. 

The usage of the modified feature descriptors shows a 

significant increase in the performance of the CNN model 

over SVM using both poly and rbf kernel functions. AAC 

modified feature descriptors improved by 19.8%, 27.9%, 

17.6%, 21.5%, 17.3%, and 22% in AUC, MCC, accuracy, 

Fig. (4). Performance comparison of CNN, SVM-rbf, and SVM poly using modified feature vectors with several evaluation metrics: (A) 

Precision, (B) MCC, (C) Accuracy, (D) F1-score, (E) Recall, and (F) AUC. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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F1-score, recall, and precision, respectively. CTDT modified 

feature descriptors also improved by 19.5%, 39.6%, 23.3%, 

29.9%, 24.3%, and 31.2% in AUC, MCC, accuracy, F1-

score, recall, and precision, respectively.  

The results show that the CNN model trained by the 

modified feature descriptors using EMD has the highest per-

formance in comparison to using normal feature descriptors. 

This encourages us to exert more effort in respect of apply-

ing EMD on other sets of features and use different methods 

for extracting features. 
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