
Vol.:(0123456789)1 3

Int. j. inf. tecnol.
https://doi.org/10.1007/s41870-023-01328-1

ORIGINAL RESEARCH

A multicore‑based algorithm for optimal multi‑way number
partitioning

Kamel M. K. Abdelsalam1 · Soheir M. Khamis1 ·
Hatem M. Bahig1 · Hazem M. Bahig1,2

Received: 21 December 2022 / Accepted: 26 May 2023
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2023

Abstract The Multi-Way Number Partitioning (MWNP)
problem is to divide a multiset of n numbers into k subsets in
such a way that the largest subset sum is minimized. MWNP
is an NP-hard combinatorial optimization problem which
requires a high computational time. It has applications in
many areas, such as processor scheduling and public key
encryption. In this paper, we design a fast parallel algorithm
that finds an exact solution for the MWNP problem based on
the recursive principle of optimality. The practical studies
on a multicore system and data set generated in the range
[1, 248 − 1] show that the proposed parallel algorithm is able
to reduce the running time of the corresponding sequen-
tial algorithm. The results of the parallel algorithm show
that, using 16 cores, the algorithm achieves, on average, a
speedup of 10 and a percentage 90% of improvement in run-
ning time over its sequential counterpart.

Keywords Number partitioning · Parallel algorithms ·
Multicore systems · Optimization, NP-hard

1 Introduction

In the recent years, different parallel systems have been
developed and played a significant role in the computing

field. One of the research fields that is affected by this tech-
nology is optimization problems. Examples of optimization
problems are scheduling problem [1, 2], wireless sensor
network [3], bioinformatics [4, 5], and steganography [6].
The main goals of using parallelism in optimization field are
speeding up the computation and being able to solve prob-
lems of large sizes. Examples of using parallelism for differ-
ent optimization problems in a variety of fields of research
are addition chain [7, 8] and bioinformatics [9–12].

The multi-way number partitioning (MWNP) is one of
the optimization problems that require parallel processing
due to the high computational time to find the optimal solu-
tion. It aims to divide a multiset S of n numbers into k sub-
sets such that the largest subset sum is minimized. Formally,
MWNP problem is defined as in Table 1.

For example, given S = {3, 2, 4, 1, 3, 3, 6} and k = 3 .
P1 = ⟨{6, 3}, {4, 3}, {3, 2, 1}⟩ is a partition of S with
cost(P1) = 6 + 3 = 9 , while P2 = ⟨{6, 2}, {4, 3}, {3, 3, 1}⟩ is
another partition of S with cost(P2) = 6 + 2 = 8 . The parti-
tion P2 has a smaller cost than P1 , so P2 is a better solution
in this example. It is clear that there is no better solution than
P2 since its cost is the perfect cost Cp =

�∑
x∈S x

k

�
=

�
22

3

�
= 8 .

Hence, P2 is optimal.
There are two main approaches to solving the MWNP

problem. The first approach is based on solving the MWNP
problem in a polynomial time but the output solution is
not exact. Examples of approximation algorithms are the
Longest Processing Time (LPT) algorithm [13] and the Kar-
markar-Karp (KK) algorithm [14]. The second approach is
based on finding an optimal solution for the MWNP prob-
lem. This approach requires a high computational time to
find the solution. Examples of optimal solutions for MWNP

 * Hazem M. Bahig
 hbahig@sci.asu.edu.eg
1 Computer Science Division, Mathematics Department,

Faculty of Science, Ain Shams University, Cairo, Egypt
2 Information and Computer Science Department, College

of Computer Science and Engineering, Ha’il University,
Ha’il, Kingdom of Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01328-1&domain=pdf
http://orcid.org/0000-0002-1999-1567
http://orcid.org/0000-0002-2373-6307
http://orcid.org/0000-0002-8137-7939
http://orcid.org/0000-0001-9448-6168

 Int. j. inf. tecnol.

1 3

are the Recursive Number Partitioning (RNP) algorithm [15]
and the Improved RNP (IRNP) algorithm [16].

The goal of this paper is to reduce the execution time
of one of the exact algorithms on a multicore system for
two reasons: (1) The main drawback of the aforementioned
algorithms is that the running time to get an optimal solution
rapidly increases with a small increase in the number of ele-
ments, n, in the multiset S. (2) There is no parallel algorithm
for optimally solving the MWNP problem.

In this paper, we focus on parallelizing the IRNP algo-
rithm by distributing the search space among many proces-
sors. The experimental results show the effectiveness of
parallelization and the improvement of the running time by
percentage 90% , using 16 threads, over the IRNP algorithm.

The rest of the paper is organized as follows. In Sect. 2,
a quick review of the previous works on MWNP problem.
In Sect. 3, the sequential algorithm IRNP is described. Sec-
tion 4 is dedicated to describe the main idea and pseudocode
of the proposed parallel algorithm. In Sect. 5, the experi-
mental results of measuring the performance of the proposed
parallel algorithm are presented. Finally, Sect. 6 concludes
the work done in this paper and suggests some future works.

2 Related work

A large number of algorithms are proposed to solve MWNP
problem. These algorithms categorized into two groups to
solve the MWNP problem. The first group includes approxi-
mation algorithms that solve MWNP in a polynomial time
such as the Longest Processing Time (LPT) algorithm [13],
the Karmarkar-Karp (KK) algorithm [14], and the Cached
Iterative Weakening (CIW) algorithm [17]. The LPT algo-
rithm is a greedy algorithm for solving the MWNP problem
that runs in time O(n log n + n) . Karmarkar and Karp have
defined a set of differencing operations [14] for MWNP and

introduced their set differencing algorithm which is based
on these operations. Both algorithms, LPT and KK, find
an optimal solution when n ≤ k + 2 , where n ≥ k ≥ 2 . Oth-
erwise, their output is used as an upper bound, ub, in the
exact algorithms. The KK algorithm has the same order of
time complexity as the LPT algorithm however, in general,
the KK algorithm obtains a better solution than the LPT
algorithm [18–20].

The CIW algorithm is a parametric algorithm that
assumes the existence of a perfect partition and hence
sets the bounds. Then, it iteratively weakens these bounds
until it finds a feasible solution which is guaranteed to be
near-optimal. The CIW algorithm uses a modified version
of the Extended Schroeppel-Shamir (ESS) algorithm [16]
that requires to be given the number of subsets to be gener-
ated, as a parameter, in advance. Choosing this parameter
is a problem that rises when applying the CIW algorithm
[19, 20] to solve the MWNP problem. However, the CIW
algorithm outperforms all heuristic algorithms for MWNP
problem.

The second group includes exact (optimal) algorithms
such as the Horowitz-Sahni (HS) algorithm [21] and the
Schroeppel-Shamir (SS) algorithm [22] for the 2-way num-
ber partitioning which is a special case of the MWNP prob-
lem when k = 2 . For the general case of multi-way parti-
tioning, there are the Recursive Number Partitioning (RNP)
algorithm [15], the Improved RNP (IRNP) algorithm [16],
the Moffitt algorithm [23], and the Sequential Number Par-
titioning (SNP) algorithm [24].

Both the HS and SS algorithms run in the same time
complexity O(n ⋅ 2

n

2) [19]. However, The SS algorithm runs
10 times faster than the HS algorithm for n > 55 [19, 20].
Also, the HS algorithm uses O(2

n

2) of space, while the SS
algorithm has a lower space complexity O(2

n

4) [19, 20, 25].
Extended versions of the HS and SS algorithms, namely

the Extended HS (EHS) and Extended SS (ESS) algorithms

Table 1 A formal definition of the MWNP problem

Input A multiset, S, of n positive integers and a number of subsets, k, where n, k ∈ ℕ − {0} and n ≥ k ≥ 2.
A Feasible Solution

P = ⟨S1, S2,… , Sk⟩ , where Si ⊆ S : i = 1, 2,… , k,
k⋃

i=1

Si = S , and Si ∩ Sj = � for i ≠ j . That is, P is a disjoint
partition (simply, a partition) of S.

 Cost For a partition P = ⟨S1, S2,… , Sk⟩ of S, the cost of P, denoted by cost(P), is the largest subset sum in P, i.e.

cost(P) =
k

max
i=1

�∑
x∈Si

x
�
. (1)

If cost(P) =
�∑

x∈S x

k

�
 , then the cost is called perfect cost, denoted by Cp , and the partition P is called a

perfect partition. Obviously, a perfect partition is optimal.
Goal Minimization of the costs of all feasible solutions of MWNP.

Int. j. inf. tecnol.

1 3

[16], are used in some of the algorithms for solving the
MWNP problem as subroutines to generate subsets whose
sums lie in a given range. Also, the Inclusion–Exclusion
(IE) algorithm [15] is used for the same purpose. The IE
algorithm is a binary search tree algorithm that runs in O(2n)
and uses O(n) of space. Clearly, the ESS algorithm is faster
than both the HS and IE algorithms.

The RNP algorithm uses the IE algorithm to generate all
subsets, one by one, in a specified range so that the comple-
ment of each generated subset can be recursively sub-par-
titioned into k − 1 subsets if k is odd. Otherwise, the RNP
algorithm uses an optimal 2-way partitioning algorithm called
the Complete Karmarkar-Karp (CKK) algorithm [25] to parti-
tion S into two subsets, Sk1 and Sk2 , which are recursively sub-
partitioned into k1 and k2 , respectively, where k1 = k2 =

k

2
 [15].

The IRNP algorithm, the improved version of the RNP
algorithm, uses the ESS algorithm, instead of the IE algorithm,
to generate all subsets, one by one, in a specified range such
that each generated subset is recursively sub-partitioned into
k1 =

⌊
k

2

⌋
 subsets then the complement of each generated subset

is sub-partitioned into k − k1 subsets. Both RNP and IRNP rely
on the recursive principle of optimality [16, 19, 20].

The Moffitt algorithm uses the IE algorithm as the RNP
algorithm but relies on the principle of weakest-link optimal-
ity [19, 20, 23]. The IRNP algorithm outperforms the Moffitt
algorithm for small k’s (k ≤ 5) while the Moffitt algorithm
outperforms the IRNP algorithm as when increasing k [19, 20].

The SNP algorithm has the same recursive decomposition
concept as the Moffitt algorithm but uses the ESS algorithm
instead of the IE algorithm to generate all subsets with sums
in a given range. The SNP algorithm outperforms the Moffitt
algorithm for k ≤ 6 while the Moffitt algorithm outperfroms
the SNP algorithm for k ≥ 7 [19, 20]. All the previously men-
tioned multi-way partitioning algorithms use an initial upper
and lower bounds and then tighten these bounds until an opti-
mal solution is found.

3 Improved recursive number partitioning

In this section, we describe the main concepts of the IRNP
algorithm and explain the steps of the algorithm.

3.1 Overview of IRNP

The IRNP algorithm is a branch-and-bound algorithm that
starts with a solution from an approximation algorithm. Then,
it carries on to find a better solution. The IRNP algorithm
terminates if it finds a perfect partition or when the search
space is exhausted which verifies that the last solution found
is optimal [16]. The IRNP algorithm depends on the recursive
principle of optimality [16] which can be simply expressed as
follows. To optimally partition S into k subsets, first partition
S into two subsets Sk1 and Sk2 , where k1 =

⌊
k

2

⌋
 and k2 = k − k1 .

Then, recursively optimally partition Sk1 into k1 subsets and Sk2
into k2 subsets. The subset with smaller cardinaliy of Sk1 and Sk2
is chosen to be recursively partitioned first, since it will quickly
fail or achieve a better solution [19, 20].

The IRNP algorithm can be viewed as a hybrid algorithm
because it involves the following subroutines:

Complete Greedy Algorithm (CG): The CG algorithm
[25] is an optimal branch-and-bound algorithm based on
a k-ary tree. The leftmost branch in the k-ary tree repre-
sents the solution gained from the LPT algorithm [13] for
the same problem. For k = 2 , the CG algorithm performs a
depth-first search on a binary tree. That is, it runs in time
O(2n) and uses O(n) of space. For MWNP, the CG algorithm
is used for finding an optimal solution for the instances from
Table 2 [16, 19, 20].

Karmarkar‑Karp’s Algorithm (KK): The KK algorithm
[14] is a polynomial time approximation algorithm that is
used for calculating the upper bounds applied throughout
the algorithm.

Complete Karmarkar‑Karp’s Algorithm (CKK): The
CKK algorithm [25] is an optimal branch-and-bound algo-
rithm that extends the KK algorithm. It constructs k-ary tree
in which the leftmost branch is the solution of the KK algo-
rithm. For 2-way partitioning, the CKK algorithm is used for
5 ≤ n ≤ 16 [19, 20], where it performs a depth-first search
on a binary tree. That is, it runs in time O(2n) and uses O(n)
of space.

Table 2 The values of k and their corresponding values of n for which the CG algorithm is used

k = 3 4 5 6 7 8 9 10
n ≤ 12 14 16 19 21 25 27 31

 Int. j. inf. tecnol.

1 3

partMway(S, k)start

A multiset S of n num-
bers and an integer k

partMway(S, k)

stop

(a) The IRNP algorithm.

part2way(S)

n ≤ 16

m ←
SS(S)

m ←
CKK(S)

return
m

(b) The part2way subroutine.

no yes

Are n and k
in Table 2?

m ←
KK(S, k)

m ←
CG(S, k)

return
m

n ≤ k + 2
or

m = Cp

return
m

k1 ← k
2

k2 ← k − k1
lb ← k1 × sum(S)

k

ub ← k1 × (m − 1)

Is there a
subset S1
in range
[lb, ub]

generated
via ESS? return

m
S2 = S−S1

k = 3

sol1 ← sum(S1)

sol2 ←
part2way(S2)

sol ←
max(sol1, sol2)

k1 = 2

sol1 ←
partMway(S1, k1)

sol1 ←
part2way(S1)

sol1 < m

k2 = 2

sol2 ←
partMway(S2, k2)

sol2 ←
part2way(S2)

sol ←
max(sol1, sol2)

sol < m

m ← sol
ub ← k1 × (m − 1)

ub < lb
or

m = Cp

(c) The recursive partMway routine.

return
m

yesno

yesno

noyes

yesno

yes

yes

no yes

yes

no yes

no

no

no

Fig. 1 The flowcharts of the IRNP algorithm

Int. j. inf. tecnol.

1 3

Schroeppel‑Shamir’s Algorithm (SS): The SS algorithm
[22] is an optimal 2-way partitioning algorithm that is used
for n ≥ 17 [19, 20].

Part2way subroutine: The part2way subroutine (Fig. 1(b))
combines the CKK and SS subroutines. It is called in IRNP
whenever a subset is required to be partitioned into 2 sub-
sets (2-way partitioning) and it returns the max of the two
subset sums.

Extended Schroeppel‑Shamir’s Algorithm (ESS): The
ESS algorithm [16] extends SS to function as a generator
of subset sums that exist in a given range [lb, ub] for the
IRNP algorithm.

3.2 IRNP steps description

Figure 1 shows flowcharts of the IRNP algorithm. The fig-
ure includes the flowchart (Fig. 1a) for the IRNP algorithm
showing its input and main recursive routine, while the flow-
chart (Fig. 1b) is for the part2way subroutine used for 2-way
partitioning, and finally the flowchart (Fig. 1c) for the main
recursive routine in the IRNP algorithm whose steps are
described in the following.

The CG algorithm is applied if n and k are related
together using the values in Table 2. In this case, the algo-
rithm returns the output solution of the CG algorithm,
which is optimal, and terminates. Otherwise, the algorithm
computes an approximation solution using the KK algo-
rithm. Based on the output of the KK algorithm, there are
two cases:

1. The algorithm returns an optimal solution and termi-
nates if either n ≤ k + 2 or the KK algorithm returns a
perfect partition.

2. The algorithm uses the output of the KK algorithm as
an initial value of the best partition cost found so far,
denoted by m, and calculates a lower bound, lb, and an
upper bound, ub, using the following formulae [16, 19,
20]:

The algorithm divides S into two subsets S1 , which is gen-
erated by the ESS algorithm with sum in [lb, ub], and
S2 = S − S1 . Then, it recursively sub-partitions S1 and S2
into k1 and k2 subsets, respectively, where k1 =

⌊
k

2

⌋
 and

k2 = k − k1 . The algorithm, then, has the following two
cases.

(2)

lb = k1 ×

�∑
x∈S x

k

�
, ub = k1 × (m − 1), where

k1 =
�
k

2

�
.

The first case is when k = 3 . The algorithm finds the max-
imum value, denoted by sol, between the sum of S1 , since
k1 = 1 , and the output of the 2-way partitioning algorithm
(Fig. 1b) of S2 , since k2 = 2 . If sol < m , then the algorithm
updates m and ub according to (Eq. 2). If sol ≥ m , then the
ESS algorithm generates another S1 and the previous steps
are repeated.

The second case is to apply the 2-way partitioning algo-
rithm (Fig. 1b) to S1 if k1 = 2 . Otherwise, the algorithm calls
itself on S1 and k1 and the output of either cases is saved in
sol1 . If sol1 < m , the same is applied to S2 and k2 and the out-
put is saved in sol2 . Then, the algorithm finds the maximum
value, denoted by sol, between sol1 and sol2 and updates m and
ub if sol < m . Otherwise, the ESS algorithm generates another
S1 and the previous steps are repeated. The IRNP algorithm
continues in this manner until lb > ub , m is the perfect cost, or
there is no more subsets in the search space [19, 20].

4 Parallel IRNP

In this section, we elaborate on how to parallelize the IRNP
algorithm on a parallel shared memory model. In the first
subsection, the main idea of parallelizing IRNP is described.
In the second subsection, the pseudocode of the proposed
PIRNP, parallel IRNP, algorithm is presented.

4.1 The idea of parallelizing IRNP

The idea of parallelizing the IRNP algorithm is based on
how the proposed algorithm works on many subsets simul-
taneously. So, instead of generating one subset S1 using the
ESS algorithm, the proposed parallel algorithm generates
a number � ∈ ℕ − {0} of subsets S1 . We discuss setting �
experimentally in Sect. 5.2. After that, these � subsets are
distributed among the available threads dynamically.

According to the mechanism of dynamic threads, the par-
allel system assigns one subset S1 from the � subsets to each
thread. Each thread works independently on its subset as in
the sequential way. The result of each working thread is one
of the following:

1. it finds and returns a perfect partition cost and the search
process is terminated.

2. it returns the best partition cost found since there is no
more subsets in the range of search (the search space is
exhausted).

3. form the � subsets, a new subset S1 is assigned to the
available thread.

If all the � subsets are assigned to the available threads with-
out finding an optimal solution, then another � subsets are
generated and the same process is repeated.

 Int. j. inf. tecnol.

1 3

The algorithm uses “found" as a global shared variable
that is initialized to be false. If a thread finds a perfect parti-
tion or the search space has no subsets anymore, then the
thread updates the shared variable, found, to true. Also,
before any thread works on its assigned subset S1 , it first
tests if the shared variable found is still false.

The reasons for using the parallelism on the set of subsets
are:

1. The total number of subsets obtained from the first call
of the ESS algorithm is large. Figure 2 shows the num-
ber of subsets generated at the first call of the ESS algo-
rithm when n = 35 and k = 8 and 9 for 40 instances.

2. The running time for calling subroutines such as the CG
and KK algorithms is small compared to the total time
as illustrated in Fig. 3.

At the end, the ESS algorithm may generate a number �̄� < 𝛼
subsets which are also assigned dynamically to the available
threads.

4.2 PIRNP pseudocode

The pseudocode for the PIRNP algorithm is given in Algo-
rithm 1. A brief description of the algorithm is explained
in the following. Line 2 represents the calling of the CG
algorithm to find an optimal solution when n and k verify
the relation of Table 2 and the algorithm is terminated. Oth-
erwise, Line 3 represents the calling of the KK algorithm to
find an approximation or an optimal solution.

0 5 10 15 20 25 30 35 40
4

6

8

10

12

14

16

Instances

N
um

be
r
of

su
bs
et
s
(i
n
m
ill
io
ns
)

(a) n = 35, k = 8

0 5 10 15 20 25 30 35 40
6

8

10

12

14

16

18

20

22

24

Instances

N
um

be
r
of

su
bs
et
s
(i
n
m
ill
io
ns
)

(b) n = 35, k = 9

Fig. 2 The number of subsets generated when the IRNP algorithm calls the ESS algorithm for the first time

0 5 10 15 20 25 30 35 40

50

100

150

200

250

300

350

400

450

Instances

R
un

ni
ng

ti
m
e
(i
n
se
co
nd

s)

(a) n = 35, k = 8

total time
CG time
KK time

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1,000

1,200

1,400

Instances

R
un

ni
ng

ti
m
e
(i
n
se
co
nd

s)
(b) n = 35, k = 9

Fig. 3 The total time of the IRNP algorithm compared to the time of the two subroutines CG and KK

Int. j. inf. tecnol.

1 3

Algorithm 1 PIRNP
Input: A multiset, S, of n positive integers and a number of subsets, k.
Output: The cost of an optimal partition P =< S1, S2, . . . , Sk > of S.
(The variables m, lb, ub, Cp, and found are global and shared throughout the program).
1: procedure PIRNP(S, k)
2: if n and k are in Table 2 then return CG(S, k) The algorithm terminates.
3: m ← KK(S, k)
4: if n ≤ k + 2 then return The algorithm terminates.
5: Cp ← sum(S)

k

6: if m = Cp then return The algorithm terminates.
7: k1 ← k

2
8: k2 ← k − k1

9: lb = k1 × sum(S)
k

10: ub ← k1 × (m− 1)
11: found ← false
12: while found = false do
13: ESS generates a number α of subsets {S0

1 , S
1
1 , . . . , S

α−1
1 } with sums in range [lb, ub]

14: for i ← 0 to α− 1 parallel do
15: if found = false then
16: S1 ← Si

1
i
1 is the ith subset of the α subsets generated.

17: S2 ← S − S1 2 is the complement of S1.
18: if k = 3 then
19: sol1 ← sum(S1)
20: sol2 ← part2way(S2) Figure 1 (b)
21: sol ← max(sol1, sol2)
22: if sol < m then
23: m ← sol
24: ub ← k1 × (m− 1)
25: if ub < lb or m = Cp then found ← true
26: end if
27: else
28: if k1 = 2 then
29: sol1 ← part2way(S1) Figure 1 (b)
30: else
31: sol1 ← partMway(S1, k1) Figure 1 (c)
32: end if
33: if sol1 < m then
34: if k2 = 2 then
35: sol2 ← part2way(S2) Figure 1 (b)
36: else
37: sol2 ← partMway(S2, k2) Figure 1 (c)
38: end if
39: sol ← max(sol1, sol2)
40: if sol < m then
41: m ← sol
42: ub ← k1 × (m− 1)
43: if ub < lb or m = Cp then found ← true
44: end if
45: end if
46: end if
47: end if
48: end for
49: end while
50: return The algorithm terminates.
51: end procedure

 Int. j. inf. tecnol.

1 3

The optimal solution is obtained either when n ≤ k + 2
[14, 18–20] or when the output of the KK algorithm matches
the perfect solution as shown in lines 4-6. If the KK solution
is not optimal, the algorithm determines the sizes k1 and k2
of the two subsets S1 and S2 of S, and the range of search
[lb, ub] for the subsets S1 ’s as given in lines 7-10. Lines
11-49 represent the process of searching for the perfect solu-
tion or the best partition cost that can be obtained for n and
k. The searching process starts with generating � subsets by
calling the ESS algorithm as in line 13. Then, the � subsets
are distributed among the available threads to try finding an
optimal solution as given in lines 14-48.

5 Experimental results and discussion

In this section, we study the performance of the proposed
algorithm, PIRNP, compared to the sequential algorithm,
IRNP. In the first subsection, the hardware and software
configurations used in the experiments are described. In the
second subsection, we discuss experimentally setting � and
choosing the scheduling type. In the third subsection, the
results of comparing the two algorithms, IRNP and PIRNP,
in terms of the running time are discussed. Finally in the
fourth subsection, the scalability of the proposed algorithm,
PIRNP, is presented.

Table 3 The average time in seconds of PIRNP, for n = 40 , in the four possible cases of the value of � and scheduling type

� Static Scheduling Dynamic Scheduling

2 4 8 16 2 4 8 16

k = 6 Fixed Alpha 40 51.96 30 18.86 16.31 49.55 27.14 17.58 13.29
80 50.62 28.65 17.85 14.5 49.05 26.48 15.62 11.51
120 49.39 26.69 16.03 11.31 50.24 28.26 17.35 14.1
160 50.37 28 17.02 13.78 49.02 26.25 15.19 11.03
200 50.33 28.13 17.04 13.53 48.87 26.14 15.06 10.74
240 66.47 39.15 22.14 13.42 61.83 32.86 17.79 10.67
280 64.54 38.73 22.36 13.25 61.78 32.63 17.74 10.61
320 65.99 38.51 22.11 13.2 61.92 32.74 17.7 10.51

 Variable Alpha 10 × nTh 52.92 30.44 18.12 14.1 50.5 27.14 15.62 11.03
20 × nTh 52.34 29.13 17.26 13.42 49.55 26.48 15.19 10.44
30 × nTh 51.76 28.75 17.18 13.48 49.32 26.69 15 10.35
40 × nTh 51.02 28.21 16.75 12.98 49.05 26.25 14.92 10.29
50 × nTh 51.11 28.32 16.69 13.26 49.16 26.14 14.86 10.32
60 × nTh 68.87 39.26 22.12 13.02 63.09 33.04 17.48 10.19
70 × nTh 68.79 38.87 22.2 13.17 62.62 32.97 17.43 10.23
80 × nTh 67.47 39.01 22.19 13.05 63.22 32.75 17.74 10.13

k = 7 Fixed Alpha 40 194.29 128.6 94.31 84.98 167.75 102.57 77.16 69.07
80 192.51 116.64 83.42 74.75 166.07 99.51 73.8 60.69
120 202.88 121.3 86.52 72.5 166.13 99.38 71.53 59.93
160 196.82 114.12 79.35 71.48 165.55 98.19 70.63 58.66
200 199.14 113.67 82.54 73.14 165.17 96.75 68.87 57.04
240 239.98 152.46 103.11 75.31 222.04 128.02 84.77 59.32
280 251.42 149.19 104.15 76.8 220.23 127.52 84.62 58.78
320 247.23 152.06 103.25 72.78 221.06 130.77 84.72 59.47

 Variable Alpha 10 × nTh 199.55 128.12 81.68 71.02 173.45 103.73 74.5 59.72
20 × nTh 195.35 115.19 80.21 69.65 169.69 100.64 71.34 55.75
30 × nTh 194.75 120.98 78.08 66.59 169.19 100.58 69.78 55.55
40 × nTh 187.16 115.08 80.59 71.3 168.03 99.27 69.48 55.1
50 × nTh 179.09 114.71 78.88 69.49 168.22 97.84 69.12 54.87
60 × nTh 232.49 145.32 92.54 66.06 213.13 127.44 84.56 58.43
70 × nTh 234.84 144.18 96.08 67.17 215.62 125.7 83.27 59.06
80 × nTh 233.19 149.22 99.17 71.05 218.76 127.67 83.71 58.67

Int. j. inf. tecnol.

1 3

5.1 Platform and input dataset configuration

The results of implementing the IRNP and PIRNP algo-
rithms on a machine that has 2 Intel Xeon E5645 processors.
Each processor is running at 2.40GHz and able to execute
12 threads concurrently using 6 hyper-thread cores. The
machine has 24GB of RAM and is running Linux Mint 20.2
(Uma) - Cinnamon (64-bit).

The algorithms are implemented in the C++ program-
ming language and compiled using the GCC −11.1 Compiler.
We also used the OpenMP library in the parallel algorithm
to utilize the shared memory of the machine.

We used the same data set used in [19, 20]. The data set
is generated randomly from the range [1, 248 − 1] as uniform
distribution.

5.2 Best value of � and scheduling type

In this subsection, we estimate two factors that have an effect
on the performance of the implementation of the parallel
algorithm: the best value of � and the best scheduling type,
for the parallel for-loop in Line 14 in Algorithm 1, used for
handling the repeatedly generated � subsets S1 ’s using the
available threads.

For the best value of � , we have the following choices:

1. a fixed value of � ; i.e., � is a fixed number regardless any
factor such as the number of threads. Experimentally, we
set � = 40, 80,… , 320.

2. a variable value of � ; i.e., � is dependent on certain fac-
tors. In this study, we set � depending on the number of
threads.

where nTh is the number of threads used, and
c = 10, 20,… , 80.

To decide the best scheduling type, we run the parallel algo-
rithm using mechanisms, namely static and dynamic. The
first one is that the generated � subsets are assigned to the
available threads statically. This means that each thread will
handle approximately

(
�

nTh

)
 subsets.

The second mechanism is that the generated � subsets are
handled dynamically. This means that, if a thread finishes its
task, it is automatically assigned a new task if exists.

Based on the two cases of � and the two cases of the
mechanism of the parallel for-loop, we have four possible
cases. The results of these cases are shown in Table 3 for
n = 40 and k = 6 and 7 . As shown in the table, the best
estimation of the two factors is the combination of vari-
able value of � and the dynamic mechanism for the parallel
for-loop.

(3)� = c × nTh,

Table 4 The average time,
in seconds, for the IRNP and
PIRNP algorithms

IRNP PIRNP

nTh

n k 2 4 8 16

30 6 1.08 0.52 (51.9%) 0.31 (71.3%) 0.17 (84.3%) 0.11 (89.8%)

7 3.29 1.7 (48.3%) 0.97 (70.5%) 0.56 (83.0%) 0.36 (89.1%)

8 23.9 14.9 (37.7%) 7.7 (67.8%) 3.9 (83.7%) 2.1 (91.2%)

9 40.4 24.9 (38.4%) 13.8 (65.8%) 8.2 (79.7%) 5 (87.6%)

35 6 10.08 4.95 (50.9%) 2.64 (73.8%) 1.43 (85.8%) 0.86 (91.5%)

7 30.3 16.2 (46.5%) 9.1 (70.0%) 5.4 (82.2%) 3.7 (87.8%)

8 217 122 (43.8%) 62 (71.4%) 31 (85.7%) 16 (92.6%)

9 505 302 (40.2%) 174 (65.5%) 100 (80.2%) 69 (86.3%)

40 6 137 52 (62.0%) 27 (80.3%) 16 (88.3%) 11 (92.0%)

7 508 218 (57.1%) 130 (74.4%) 72 (85.8%) 55 (89.2%)

8 3165 1113 (64.8%) 567 (82.1%) 306 (90.3%) 192 (93.9%)

9 8075 4218 (47.8%) 2983 (63.1%) 1983 (75.4%) 1370 (83.0%)

45 6 1414 634 (55.2%) 337 (76.2%) 185 (86.9%) 108 (92.4%)

7 6359 3519 (44.7%) 1788 (71.9%) 1158 (81.8%) 979 (84.6%)

8 36527 21786 (40.4%) 11010 (69.9%) 5839 (84.0%) 3067 (91.6%)

9 142962 104872 (26.6%) 61106 (57.3%) 42333 (70.4%) 25037 (82.5%)

50 6 20398 10968 (46.2%) 5923 (71.0%) 3172 (84.4%) 1704 (91.6%)

7 38423 23718 (38.3%) 17550 (54.3%) 13007 (66.1%) 6807 (82.3%)

8 594304 308405 (48.1%) 175873 (70.4%) 99742 (83.2%) 50601 (91.5%)

9 − − − − − − − − −

 Int. j. inf. tecnol.

1 3

5.3 Running time comparison

The results of implementing the two algorithms, sequential
and parallel, are shown in Table 4. For each fixed n and k,
the running time of the IRNP and PIRNP algorithms is the

average of 50 instances except for the following cases due to
the large execution time: (1) n = 45 and k = 8 and 9 , only 10
instances were used to compute the average, and (2) n = 50
and k = 6, 7, 8 , only 5 instances were used to compute the
average.

From Table 4, the following observations are made:

1. The running time of the PIRNP algorithm is less than
that of the IRNP algorithm using any number of threads
nTh ≥ 2 for every n and k.

2. The percentage of improvement, poinTh , of the PIRNP
algorithm using nTh ≥ 2 threads is calculated using the
formula in (Eq. 4) and is shown between brackets to the
right of the average time of the PIRNP algorithm for
every nTh.

 where TnTh is the execution time of a parallel algorithm,
PIRNP, using nTh threads and Ts is the execution time of
the corresponding sequential algorithm, IRNP.

For example, when n = 40 and k = 7 the percentage
of improvement for the PIRNP algorithm using 2
threads compared to the IRNP algorithm is 57.1%.

3. The performance of the PIRNP algorithm increases
when the number of threads increases. This means that
the running time of the PIRNP algorithm decreases
when the number of threads increases.

4. Increasing the value of n with fixed k or increasing the
value of k with fixed n leads to increasing the running
time of the algorithms.

(4)poinTh =
(
1 −

TnTh

Ts

)
× 100%,

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Instances

R
un

ni
ng

ti
m
e
(i
n
se
co
nd

s)

(a) n = 30, k = 8

0 5 10 15 20 25 30 35 40 45 50
0
10
20
30
40
50
60
70
80
90
100
110

Instances

R
un

ni
ng

ti
m
e
(i
n
se
co
nd

s)

(b) n = 30, k = 9

Fig. 4 The running time of IRNP is affected by the elements of the multiset

Table 5 The speedup of the PIRNP algorithm over the IRNP algo-
rithm

nTh

n k 2 4 8 16

30 6 2.08 3.48 6.35 9.82
7 1.94 3.39 5.88 9.14
8 1.60 3.10 6.13 11.38
9 1.62 2.93 4.93 8.08

35 6 2.04 3.82 7.05 11.72
7 1.87 3.33 5.61 8.19
8 1.78 3.50 7.00 13.56
9 1.67 2.90 5.05 7.32

40 6 2.63 5.07 8.56 12.45
7 2.33 3.91 7.06 9.24
8 2.84 5.58 10.34 16.48
9 1.91 2.71 4.07 5.89

45 6 2.23 4.2 7.64 13.09
7 1.81 3.56 5.49 6.50
8 1.68 3.32 6.26 11.91
9 1.36 2.34 3.38 5.71

50 6 1.86 3.44 6.43 11.97
7 1.62 2.19 2.95 5.64
8 1.93 3.38 5.96 11.74
9 − − − −

Int. j. inf. tecnol.

1 3

5. The running time of the IRNP (also PIRNP) algorithm
is affected by the values of the elements in the multiset.
Figure 4 shows the variation of the running time when
n = 30 and k = 8 and also when n = 30 and k = 9 for 50
instances.

5.4 Scalability

The scalability of a parallel algorithm on a parallel archi-
tecture is a measure of how much speedup the parallel
algorithm could achieve when the number of processors
increases [26].

Table 5 illustrates the speedup, SnTh , of the PIRNP algo-
rithm, which is equal to the ratio of the execution time
of the IRNP algorithm, Ts , to the execution time of the
PIRNP algorithm using nTh threads, TnTh.

It is clear that the speedup of the PIRNP algorithm increases
when the number of threads increases. The average speedups

(5)SnTh =
Ts

TnTh
.

achieved by the PIRNP algorithm are 1.9, 3.5, 6, and 10
using 2, 4, 8, and 16 threads, respectively.

The scalability of the PIRNP algorithm increases when
the number of threads increases as illustrated in Fig. 5.

6 Conclusion and future work

In this paper, we discussed the problem of multi-way num-
ber partitioning that aims to divide a multiset of n elements
into k subsets such that the largest subset sum is minimized.
Many sequential algorithms are developed for solving this
problem. We parallelize one of these algorithms that is based
on the recursive principle of optimality on a multicore sys-
tem. The idea of parallelization is based on dividing the
search space into chuncks and each chunck is distributed to
the available threads to find an optimal solution.

The experimental results on different values of n, k, and
number of threads demonstrate that the proposed parallel
algorithm improves the running time of the sequential algo-
rithm by 90% , on average, and the algorithm achieves sub-
linear speedup.

0 2 4 8 16
0

2

4

6

8

10

12

14

16

18

Sp
ee
du

p
(a) n = 30

k = 6
k = 7
k = 8
k = 9

0 2 4 8 16
0

2

4

6

8

10

12

14

16

18
(b) n = 35

0 2 4 8 16
0

2

4

6

8

10

12

14

16

18
(c) n = 40

Number of threads

0 2 4 8 16
0

2

4

6

8

10

12

14

16

18

Sp
ee
du

p

(d) n = 45

0 2 4 8 16
0

2

4

6

8

10

12

14

16

18
(e) n = 50

Number of threads

Fig. 5 Scalability of the PIRNP algorithm

 Int. j. inf. tecnol.

1 3

A future work for this research could be to study one of
the following questions:

1. What is the effect of parallelizing the ESS algorithm
and other approximation algorithms used in the PIRNP
algorithm?

2. How to use GPU (Graphics Processing Unit) on MWNP?
3. What is the effect of using high-performance systems on

the Moffitt algorithm (an exact algorithm) and CIW (a
parametric algorithm)?

Acknowledgements The authors would like to thank Dr. Ethan L.
Schreiber for providing us with the data set he used in his work and the
source code of the mentioned sequential algorithms.

References

 1. Sharma PS, Kumar S, Gaur MS, Jain V (2022) A novel intelli-
gent round robin cpu scheduling algorithm. Int J Inform Technol
14:1475–1482

 2. Khamis SM, Reda NM, Zakaria W (2022) Combining range-
suffrage and sort-mid algorithms for improving grid scheduling.
J Supercomput 78:3072–3090

 3. Deepakraj D, Raja K (2021) Markov-chain based optimization
algorithm for efficient routing in wireless sensor networks. Int J
Inform Technol 13:897–904

 4. Kenawy TG, Abdel-Rahman MH, Bahig HM (2022) A fast longest
crossing-plain preserving common subsequence algorithm. Int J
Inform Technol 14:3019–3029

 5. Abbas MM, Bahig HM (2016) A fast exact sequential algorithm
for the partial digest problem. BMC Bioinform 17(Suppl 19):510

 6. Nassr DI, Khamis SM (2021) Applying permutations and cuckoo
search for obtaining a new steganography approach in spatial
domain. Int J Netw Secur 23(1):67–76

 7. Bahig HM, Kotb Y (2019) An efficient multicore algorithm for
minimal length addition chains. Comput 8(1):23

 8. Bahig HM, Kotb Y (2019) A multicore exact algorithm for addi-
tion sequence. J Comput 14(1):79–87

 9. Abbas MM, Abouelhoda M, Bahig HM (2012) A hybrid method
for the exact planted (l, d) motif: Finding problem and its paral-
lelization. BMC Bioinform 13(Suppl 17):S10

 10. Abbas MM, Bahig HM, Abouelhoda M, Mohie-Eldin MM (2014)
Parallelizing exact motif finding algorithms on multi-core. J
Supercomputer 69(2):814–826

 11. Bahig HM, Abbas MM, Mohie-Eldin MM (2017) Parallelizing
partial digest problem on multicore system. In: Bioinformatics

and biomedical engineering: 5th international work-conference,
IWBBIO 2017, Granada, Spain, April 26–28, 2017, Proceedings,
Part II 5. pp 95–104

 12. Bahig HM, Abbas MM (2018) A scalable parallel algorithm for
turnpike problem. J Egypt Math Soc 26:18–26

 13. Graham RL (1966) Bounds for certain multiprocessing anomalies.
Bell Syst Tech J 45(9):1563–1581

 14. Karmarker N, Karp RM (1983) The differencing method of set
partitioning, Tech. Rep. UCB/CSD-83-113, EECS Department,
University of California, Berkeley

 15. Korf RE (2009) Multi-way number partitioning. In: Proceedings
of the 21st international joint conference on artificial intelligence,
San Francisco, CA, USA, pp. 538–543. Morgan Kaufmann Pub-
lishers Inc.

 16. Korf RE (2011) A hybrid recursive multi-way number partitioning
algorithm. In: Proceedings of the 22nd international joint confer-
ence on artificial intelligence. pp 591–596

 17. Schreiber EL, Korf RE (2014) Cached iterative weakening for
optimal multi-way number partitioning. In: Proceedings of
the twenty-eighth AAAI conference on artificial intelligence,
pp. 2738–2745. AAAI Press

 18. Yakir B (1996) The differencing algorithm ldm for partitioning:
A proof of a conjecture of karmarkar and karp. Math Oper Res
21(1):85–99

 19. Schreiber EL (2014) Optimal multi-way number partitioning.
University of California, Los Angeles

 20. Schreiber EL, Korf RE, Moffitt MD (2018) Optimal multi-way
number partitioning. ACM 65(4):24:1-24:61

 21. Horowitz E, Sahni S (1974) Computing partitions with applica-
tions to the knapsack problem. J ACM 21(2):277–292

 22. Schroeppel R, Shamir A (1981) A T = O(
2n

2
), S = O(

2n

4
) Algo-

rithm for Certain NP-Complete Problems, SIAM J Comput vol
10, pp 456–464

 23. Moffitt MD (2013) Search strategies for optimal multi-way num-
ber partitioning. In: Proceedings of the 23rd international joint
conference on artificial intelligence, IJCAI ’13, pp 623-629.
AAAI Press

 24. Korf RE, Schreiber EL, Moffitt M D (2014) Optimal sequential
multi-way number partitioning. In: International Symposium on
Artificial Intelligence and Mathematics, 2014

 25. Korf RE (1998) A complete anytime algorithm for number parti-
tioning. Artificial Intell 106(2):181–203

 26. Kumar V, Gupta A (1994) Analyzing scalability of parallel
algorithms and architectures. J Parallel Distributed Comput
22(3):379–391

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	A multicore-based algorithm for optimal multi-way number partitioning
	Abstract
	1 Introduction
	2 Related work
	3 Improved recursive number partitioning
	3.1 Overview of IRNP
	3.2 IRNP steps description

	4 Parallel IRNP
	4.1 The idea of parallelizing IRNP
	4.2 PIRNP pseudocode

	5 Experimental results and discussion
	5.1 Platform and input dataset configuration
	5.2 Best value of and scheduling type
	5.3 Running time comparison
	5.4 Scalability

	6 Conclusion and future work
	Acknowledgements
	References

